Page#1

Integrated Media Server
Programming Manual

V5.0 2. August 2011

© Granite Precision Inc. 2011
All Rights Reserved Worldwide
Patents Pending

Granite Precision Inc.
2305 Alpen Ct. Ste. 201
Pine Mountain Club
CA 93222-5476

The Integrated Media Server isdedicated to the memory of
Walt Disney Imagineer H.F. Crane. Without hisinterest,
enthusiasm, and evangelism in the early days, this product

would never have gotten off the ground.

The positive attitude H.F. showed from the first moment he was

diagnosed with Stage |V cancer was amazing. Yet at the sametime,
it matched how he approached everythingin life.

This document was written with Sun Microsystems OpenOfficeorg 1.1.2

PROGRAMMING MANUAL ..o 1

REVISION HISTORY .ottt ettt ettt e s e e s st e e e s s e e e e s sabaeesssabeeessabenessenrens 5
OVERVIEW ...ttt ettt ettt et e e s e ba e e e s st e e s s abe e e s saabeeessabbeeesssabaeessanbeeaesans 5
USING BRATINTRUST .ottt et st e sttt e s s s e e e s s et e e e s s bt e e s s e bae e s s eneeeessanens 5
CONNECTING TOTHE INTEGRATED MEDIA SERVER.....cttiieiiiitiieeee e e sestreeee s s s e sssranees s s s ssssssnes 5
CHECKING THESYNTAX OF YOUR SHOWuuttiiiiieiiiiitieeieee e s s ssssrsssseessssssssasssessssssssssssssssssssnnns 5
SYNCHRONIZING YOUR SHOW WITH THEIIMS ...ttt vvv e sreeeees 6
PROGRAMMING CONCEPTS. ...ttt ettt ettt e e s st e e st a e s stae e s s saae e e s sanaeaessnees 6
HARDWARE CONFIGURATOR....cceiiiitvrieesieteeeeessvssreeeaeeeas ERROR! BOOKMARK NOT DEFINED.
How hardware configuration isapplied to the Hardware.............ccocvvieneneneicieienenns 6

RS @ =1 = 1 1T 6
(S o 11 | 0= 6
RESOUICE ODJECES ... et be e e enas 8
=T R 8
GENEIal TASK USAJE.....ueiiie ettt ettt ettt e s e st s ae et e e teenbe e sae e sneesanesnneennes 8
Bz S L 1= 9
LIz = SO0 011 17= 0 RO 13

S = 13

RS (0] o SR 15

PALISE. ... e e e rr————— b aaaaaas 15

(0= | SRR 15

B I ([0= SO SRR 16
REMOVETTIGOEN'S ...ttt sttt ettt sttt neenenne s 17

= o TR 18

=T oY= TR 18

L€ (o Y 18

L et e e e — e e s e —— e e e ab— e e e e b ae e e aabrereeabreeeeabeeesaaarees 20

The All-Important AUTOBEGIN tasK.........ccccveiiiieiiiie e 2
Variable RESOUICES (VAI)......c.iiieeieciieesieesie s ee st st et te e te e te e s teeste e s e e s aaeenteenteete e reesreens 20
GENETE USATE ..ottt sttt b e st ne et nrenne e e e 2
INEEQEN VaTADIES ...ttt 2
Floating-POINt VariablES..........cooiiirieesice e 23
SUNG VATBDIES. ... et s e 23
Variable COMMEANGS........oooiiieiee ettt e e s s e e e e e s s e saba e e e s sebaeee e s sessrnrens 23

F Ao (o V- O 24

Sl 01 = oA YZ= SRR 24
MUIIPIYV @ <.ttt sttt nn e ene s 24

DAY L0 LAY A= SRR 24
/00 LY 2= TR 24

L Y= ORI 24

F AN 00 V= 24

D0 Y= TP 24

0 1= AV A= 24

MPEG Sandard -Def and Hi-Def Video Resources (Vide0)..........ccovvevereenenniesiereniennens 26
ViIAEO FIIE LOCALIONSeeiiieeie ettt ettt ettt e s e be e s sbes sbeeessabeessbeeessbeessnees sanes 28
VIAEO COMMEANTSeeveieei ittt e e e et r e e e s s e sr e e e s sbbaeeesssabbeeesssbbessstesssnnnes 2

Page#2

L 111 1 S 2
s R 3

RS (o o PSPPSR PR X
PAILISE. ...t b et e an e sbee e sreeea X

= Y OO K7
VI0EO ODJECLS ...ttt ettt st s b bt e et ene e 3
MIXING/ROULING ...ttt ettt st bbb e e b e b s rne e 3
FAOING ..ottt et nne s 3
(@0 11 o 0] oo [0SO A
FOIMIL ...ttt ettt e b e ettt e e s be e be e sae e sae e eanenaes A
SEAEUS ANA SEEEUSTEXL ...ttt st s sre e)
ErrOr @N0 EFTOITEXEcoiiieieiesieeeese ettt st sn e sre e e nne s b
COMMON EXAMPIES ..ottt st sttt sre et e b
Audio Resources (audsour e, QUAOULPUL)..........covveeereerieeieseesieeeesreeseesee e ssesseseseeeens 38
AUAIO FIlE LOCALIONS.......ciuieieiesiesiieieeeen ettt et e e ae st sresne e eneeneen s enes 33
B o [0 J @00 1100 S 33
AUIO OBJECES ...ttt ettt b bt et ene e 3
MIXING/ROULING ...ttt ettt et se e e e b e e s ene e)
FAOING ..ot b et nae s 0
Sample Rate and RESOIULION.cuiiiiiriiiesie it 40

S (ST 010 S e (1] = SRR 40
o a0 g (o = AP a1
Digital Input Resources (AigiNpUL)ccceieeiereieeieese et sne e e 41
DiginpuEt COMMENTS......ccceiiiie e ciee e esrtee e see e e tee e e e saee s sre e e teesaeeebeesaseenreesnneeeenns 42
=00 I o o < S 42
D10 010 11 10 | @00 011 0 010 ST L
(= o I T o = RSP L
) SRR 43
i S 43
S S 43
QUBLIE.......ce ettt ettt ettt ettt e et en £ e tesaeeese e beeteentesseenne e eneeeneeenteeneenneas 43
s R va|
PAIISEL ... bt abe e sbee e nreeea 4

R (0] o T TP U P TR PR PRSPPI a7
Serial Port RESOUICES (SEFPONT) ...eveiuiciiceeeeeiesteste et ceetee e see st re st e e s sresresresreeresneeneas 44
SerpOrt COMIMEANGSccveieieieie ettt e e re et e saeeseenaesre e e ensesreennens 46
WIITE e Error! Bookmark not defined.
D = OSSPSR vivg
SEIPOIT ODJECES....eeteeeieiee ittt ar e s bttt e sbe et e s seesbesenseeneenreens 47
27 10 = =PRSS 47

D = = PSSR 47

R (0] o] =71 ST STTURURPR PR 47
S] /TP PP PP ORI 48

L@ 1111 1= S 48
(@0 111011 £ 011 | R 49
OULBUFFEICRENGETcueeiiiiierierie et 49

F 1= 1 = RSOSSN 29
INBUFFEICOUNE ...ttt sttt ne b e 49
INBUFFEICNANGE ...ttt et ne s 0
[DIES o WA RIS o LU o=y (o 1S o] K=) PSSRSO 51

Page#3

WVHIEE e e al
BULton RESOUNCES (DULLON) ...ttt sttt e 51
BULLON COMMIBNGS........cveeeiirieeeiieie i sttt e e s b e b s sne s e nne e 2

L= 0o B I o o = USSR 2
SMPTE RESOUINCES (SIMPLE)eeeerierieetesie sttt sttt see st e se e se e sn e nae e 53
SMPTE Reading COMMEBNGSooueuirierierieiniesies sesie st esie e sees sressessessessessessesees 53
SMPTE Generating COmMMANGSooueieireririesiesie e see e sse e 53

Page#4

Revision History

v10 15 Augus 2004 Initid Rev

vl1l 9. October 2004 Smadl changes to video section
v20 4. February 2005 Audio revisons

v3.0 15 May 2005 SMPTE revisons

Overview

The Integrated Media Server Platform ™ can come in many different physicd hardware
arangements. Some of these arrangements are not reprogrammable. For the rest of the
arangements, programming is done manly via our Braintrus ™ software.

Usng Braintrugt, you will creste a show, save it, upload it to the Integrated Media Server
(IMS) and watch it run.

Using Braintrust

Braintrust can be run on the IMS, or it can be run on any other Windows 2000/XP computer
on an Ethernet TCP/IP network attached to the IMS. We are working on a Windows 7

verson currently, but it will work in Windows 7 XP compatibility mode. Mog of its
functions areoffline functions, which means tha you do not need to be connected to the IMS.
Some of its functions areonline functions, which do require you to be connected. Tobe
“connected meansto be both physicaly wired to the IMS, and to be logicaly connected
indde the software. See the next section on how to connect.

Connecting isonly mandatory at the time of synchronizing the show.

ConnectingtotheIntegrated Media Server

To connect to the IMS, make sure it is up and running. Run the Braintrust software. I the
correct |P address is not aready set, select Tools | IMS Network Settings. Smply put the IP
address of the IMS here. If Braintrust is running on the IMS server itsdlf, you may enter the
loopback [P address — 127.0.0.1. To officidly connect, sdect ether Tools | Connect to IMS,
or dick the “Connect” toolbar button If you do not receive an error message, and the status
bar displays “Connected’, then you are, in fact, connected. You will aso see a Connect
message in the Log Window. You may then disconnect by exiting the program, sdecting
Tools | Disconnect from IMS, or clicking the “Disconnect” toolbar button.

Checking the Syntax of Your Show

Before uploading your show, you may check its syntax. This operation ensures that the tasks
and commands that you have created are vaid and understandable by the IMS. This gep is
not required, as the syntax will automaticaly be checked when you attempt to synchronize
this show with an IMS, if it has not been checked before. The syntax check functiondity
smply gives you an opportunity to debug your script when your PCis not connected to an
IMS.

To check the syntax, sdect Tools | Check Syntax... or click the “Check Syntax” toolbar
button. Any errors should appear in the Output Window. If there are no errors, a message

Page#5

will appear within the Output Window dating thet “no errors were found in the syntax”. If
there are erras, you may read the errors and find the problem on your own, or you may dick
on the error to be taken directly to the offending task and/or command.

Synchronizing Your Show with the IMS

Once connected to an IMS, the show may be trandferred from your PC by choosing Tools |
Synchronize... or by dicking the “Synchronize’ toolbar button. If the syntax has been
checked and was found to be vdid since the last time changes were made to the show, the
show will be ingantly transferred to the IMS and # will begin execution. If the syntax has not
been checked recently, it is automaticaly checked. If there are errors, the synchronization
process is hdted and the programmer may click on the errors within the Output Window to
address them. If no errors are found in the syntax, the show is transferred automaticaly to the
IMS, and it begins execution.

Programming Concepts
Programming is done with Braintrug.

Scripting
In Braintrust, you create red-time tasks to accomplish gods, and individud commands within
the task to fulfill those gods.

Resources

The Integrated Media Server is operrended when it comes to resources. That means
esentidly two things:

1) The IMS can have an infinite amount of typesof things in it
2) The IMS can have dmog an infinite (for al intents and purposes) number of those things.
The IMS is made to be extremely scdable.

Notes:

1) Dont worry if you dont know what each of these resources is a the moment. They'll be
discussed individualy later.

2 The list below datesthe resources the IMS supports and the maximum number of those
resources. However, you could not have the maximum number of dl of those resources in
one IMS, hut if dl you put in one IMS was one type of resource, then the maximum would

y!

3 Well dso lig the name of the resource in Braintrust that you'll be usng. We cdl that the
Braintrust Identifier.

4) Some resources have inputs and outputs that are physicdly grouped together on one port,
such as a serid port, which is one port, but has both an incoming data stream and an
outgoing data stream. In some cases, as with the seria port, we Hill distinguish the input
differently than the output for smplicity while programming.

5 In some cases with externdly interfaced resources, the maximum number is not tied to
how many can be physically put ingde the IMS, such is as lised beow, and, therefore the
maximum is truly our ultimate internd maximum of 4,294,967,295.

6 Built-in Resource types are included with every IMS.

Page#6

Built-In Resource Types Braintrust Identifier Maximum Number

TASKS task 4,294,967,295
VARIABLES var 4,294,967,295
Optional Resource Types Braintrust Identifier Maximum Number
DIGITAL INPUTS diginput 1024

DIGITAL OUTPUTS digoutput 1024
ANALOGUEINPUTS ananput 128

ANALOGUE OUTPUTS anaoutput 64

SERIAL PORTS serport 128

ETHERNET PORTS ethport K7
SMPTELTCINTERFACES smpte 16

MIDI INPUTS midiinput 16 (256 channels)
MIDI OUTPUTS midioutput 16 (256 channels)
DMX INPUTS dmxinput 32 (16,334 channds)
DMX OUPUTS dmxoutput 32 (16,334 channds)
DISPLAY display K7

SYNAPSE CONSOLE SCREENS screen 16,334
BUTTONS button 1024

VIDEO DECODER SOURCES vidsource 16

VIDEO DECODEROUTPUTS vidoutput 16

AUDIO CHANNEL SOURCES audsource %

AUDIO CHANNEL OUTPUTS audoutput %

Resources are listed by their type, and index (number). The firgt one is dways 1, and the last
one is the largest number of that resource type you have in the sysem. Tasks and Variables
are internd resources that can number up to 4,294,967,295. Here are some examples:

va:l

var2

va8
va:10
va:19
var:92
var:100
var:1000
var:10000
var:100000
var:4294967295

Externd resources depend on the physicd quantity ingtdled in your IMS. For example, if
you have one 8 port 15232 serid card inddled, you can access.

serport:1- serport:8
there is NO serport:9
However, if you ingdl two 8 port rs232 serid cards, then the amount doubles:

saport:l —serport:16

Page#7

Some commands let you set a range of resources.
00: 00: 00: 01 On di goutput:1-3
This dlows you to avoid typing the same thing in multiple times

00: 00: 00: 01 On digoutput:1
00: 00: 00: 01 On di gout put: 2
00: 00: 00: 01 On di gout put: 3

Resource Objects

Sometimes it's useful to utilize aportion or a property of a resource. Most resources have
some sort of property that can be changed or viewed. This is denoted with the dot “.”
between the resource and its object.

00:00:00:01 Set var:1 serport:1.inbuffercount

Sometimes there is more than one resaurce property with the same name, and you have to list
an index (just like resource indices)

00: 00: 00: 01 Wite display:1.row 1 “displayed on row 1”

Sometimes you have to work with more than one resource property & atime. To do this, you
use arange, just like with resource indices.

00: 00: 00: 01 Del ete serport:l.inbuffer:2-6

The more speciaized the operation, the more you drill down into the resource. We cdl
properties of resources objects. The resource may have more than one object, and that object
may have its own properties (object).

Tasks

Tasks are short programs that manipulate resources. Tasks are like recipes, and commands are
like the individua steps in a recipe. You could program the smplest show in the world with
just one task with one command in it. You don't have to have more, but it makes life a lot
easer when you can group things into tasks, epecidly if you're going to be doing that “task”
more than once. The other neat thing about tasks is that they can run smultaneoudy,
synchronoudly, or asynchronoudy, so very complex things can be accomplished.

General Task Usage

Tasks are your way to manipulate resources. Start a task whenever you need to make changes
in the system. Normdly tasks should be sectioned off to logica stes in your overdl

program. For example, using the recipe metgphor, if you're cooking severd things for dinner,
you might want to group together the details of cooking each item together:

- Dinner -

Cook Entree
Cook Side Dishes
Cook Dessert

Page#8

You might want to further subdivide your cooking into even smdler tasks:

— Cook Entree -
Prepare Foods for this entree
Cook Foods for this entree

Thee smdler tasks could be divided further into subtasks, or enacted through commands
(ingtructions) right there in those tasks. It's up to you, and how complex your show is

- Prepare Foods for this entree -
Preheat Oven
Chop Onions
Chop Cdery
Crumble Bread
Mix in Hamburger
Mix in Sausage
Mix in Egg

— Cook Foods for this entree -
Put Meatloaf Mixture in Oven
Cook for 45 minutes on low temperature

Task Time

Each running task has its own clock which runs independently of dl the other tasks clocks
that are running. Tasks that are running are dormant and do not have their clocks running.
There is no centrd clock in the IMS system. The chronological time and date are available to
the system, but they do not fundamentally affect the running systems time-keeping
mechanisms. A Stopped(not running task) has its clock reset to 00:00:00:00. When atask is
garted from being s$opped (regardiess of the method of darting it), its clock begins to run.
The clock advances one frame a a time. When the running clock reaches the frameate st in
the IMS, it advances by 1 second, sets the frame to O, and continues. This is Smilar to how
normal clocks work (for example, the time after 00:59 is 01:00). In an IMS with a clock st
to run a 30 frames per second (fps), the following example is an accurate measure of time:

00:00:00:28 Wite display:1.row. 1 “hello world”

00: 00: 00: 29 Wite display:2.row.1 “hell o worl d2”
00: 00: 01: 00 Wite display:3.row.1 “hello worl d3”

Absolute Time (in frames)
(018 MainTask is started (from somewhere ese)

MainTask

g BBIBERES
5

00:00:00:28 Write display:Lrow:1 “helo world”
00:00:00:29 Write display:2row:1 “hdlo world2’
00:00:01:00 Write display:3row:1 “hdlo world3’

REBBNBRRBRNRBEENEERERED

The running cdock looks a the times ligted in the task, and when the running dock's time
matches a time listed in the task, the command a that time is executed. Many commands may
resde on the same time, and the running clock will execute dl of them on the same frame
(provided they are internd or intrinsic commands. Externa or extrinsic command times are
explained momentarily). The running clock never goes backward. Unfortunately, as much as
wed dl like to make Time go backward, it cant. This is a crucid concept with the IMS. If
the running clock encounters a time thet is less than the current time, it will execute it
immediately, as if it were listed as the current time.

00:00:00: 01 Wite display:1.row.1 “hello world”
00:00:00: 05 Wite display:2.row. 1 “hello worl d2”
00: 00: 00: 01 Wite display:3.row.1 “hello worl d3”

This is how the previous example would behave:

Absolute Time (in frames)
MainTask is started (from somewhere else)

2

MainTask
® 00:00:00:01 Write display:1.row:1 “hdllo world”
(0¢] 00:00:00:02

o 00:00:00:03

03] 00:00:00:04

03] 00:00:00:05 Write display:2row:1 “hdlo world2’
03] 00:00:00:01 Write display:3row:1 “hdlo world3’
See

that the third command is executed on the same frame a the second command?

Page#10

The running clock works the same when a Goto command interrupts timeflow:

00:
00:
00:
00:
00:
00:

00:
00:
00:
00:
00:
00:

00:01 Wite display:1.row.1 “hello world”
00:05 If var:1 = 1 Goto NextStep

00:10 Wite display:2.row. 1 “hell o worl d2”
00: 01 End

00: 15 Label Next Step

00:03 Wite display:3.row.1 “hell o worl d3”

This is how the previous example would behave if var:l = 0

Absolute Time (in frames

2

FEE88IZEREIS

MainTask is dtarted (from somewhere else)

MainTask

00:00:00:01 Write display:1.row:1 “hdlo world”

00:00:00:02

00:00:00:03

00:00:00:04

00:00:00:05 if var:1 = 1 Goto NextStep (var:1 = 0, o continue)

00:00:00:10 Write display:2row:1 “hdlo world2’
00:00:00:01 End
ManTask Stopped

This is how the previous example would behave if var:l = 1

Absolute Time (in frames)

=

EEERERREE88ITERIBC

MainTask is started (from somewhere ese)

MainTask

00:00:00:01 Write display:1.row:1 “hdlo world’

00:00:00:02

00:00:00:03

00:00:00:04

00:00:00:05 if var:1 = 1 Goto NextStep (var:l = 1, so0 jump to NextStep

00:00:00:15 Labd NextStep
00:00:00:03 Write display:3row:1 “hdlo world3’
MainTask Stopped

Page#11

No matter what happens, the running cock of a task will not go backward or back-up for any
reason, even for a task with a goto command that jumps backward in the command lis.

00: 00: 00: 01 Label Loop
00: 00: 00: 01 Wite serport:1 “hello world”
00:00:00: 03 If var:1 <> 1 CGoto Loop

This is how the previous example would behave if var:1 = 1 on the fourth time through the
loop.

Absolute Time (in frames)
MainTask is started (from somewhere ese)

=

MainTask
00:00:00:01 Labe Loop
00:00:00:01 Write serport:1 “hdlo world’

00:00:00:03 If var:1 <> 1 Goto Loop (var:1 is 0 so loop)
00:00:00:01 Labe Loop
00:00:00:01 Write serport:1 “hdlo world’

00:00:00:03 If var:1 <> 1 Goto Loop (var:1 is 0 so loop)
00:00:00:01 Labd Loop
00:00:00:01 Write serport:1 “hdlo world’

00:00:00:03 If var:1 <> 1 Goto Loop (var:1 is O so loop)
00:00:00:01 Labe Loop
00:00:00:01 Write serport:1 “hdlo world’

BREEE3X88IFERISS

00:00:00:03 If var:1 <> 1 Goto Loop (var:1 is 1 so continue)
MainTask Stopped

Extringc commands are those that take longer than one frame to execute. Often these
commands ded with externa resources, but not dways. Commands that are extrindc are
liged as such.

An extringc command causes the task to pause until the command completes. If the
command does not complete due to an error or if the command times out, the command is
aborted, and the task is stopped immediately.

The following task uses the extringc command Queue, and the time after the command
occurs varies with how long the extringc command took to complete:

00: 00: 00: 01 Queue vidsource:1 “c:\nedi a nynmpegfil e. npg”
00: 00: 00: 05 Start vidsource:1

It may be that the extringc command takes only a few frames to complete, or it may take
severd minutes, depending on the command.

Absolute Time (in frames)

Page#12

(018 MainTask is started (from somewhere dse)

MainTask
@ 00:00:00:01 Queue vidsource:l “c\media\mympegfile.mpg”

MainTask Paused waiting for completion of Queue command

3
07}
B
06
o7
03] Queue command completes here. MainTask Re-Started from here.
0°]
10
u
12 00:00:00:05 Start vidsource:1
Note that

00: 00: 00: 05 Start vidsource:1

did not occur 5 frames after the start of the task as would normaly occur with intrinsic
commands, but rather, 5 frames after the start of the task PLUSthe length of time it took the
extringc command to complete.

Task Commands

The following commands apply to tasks
Start

Stop

Pause

Cal |

Label

| f

Start

Sart <task> <params>
Starts a task directly from another task. Now, both tasks are running.

- ManTak -
00: 00: 00: 10 start SubTask

When this new task is arted, the origind task continues execution.
- ManTak -

00: 00: 00: 10 start SubTask

00: 00: 00: 15 Wite serport:1 “hello”

_ SubTask -

Page#13

00: 00: 00: 05 Wite serport:2 “hello”

For this example, the word “hello” will be sent out both serid port 1 and serid port 2 a the
EXACT same time.

The task dtarted will start execution on the following frame, regardliess of what task you dart,
or how many.

Seethe bdlow timdigting for an exact view:

Absolute Time (in frames)

(018 MainTask is started (from somewhere ese)
MainTask SubTask

024 00:00:00:01

053 00:00:00:02

07) 00:00:00:03

03} 00:00:00:04

06 00:00:00:05

or 00:00:00:06

03] 00:00:00:07

02] 00:00:00:08

10 00:00:00.09

il 00:00:00:10 SubTask Started, and MainTask continues

12 00:00:00:11 00:00:00:01

13 00:00:00:12 00:00:00:02

14 00:00:00:13 00:00:00:03

15 00:00:00:14 00:00:00:04

16 00:00:00:15 Data “hello” sent out 00:00:00:05 Data “hello” sent out serport:2
srport:1
MainTask Stopped SubTask Stopped

The start command is specid. You do not actudly need to use the word 'Start’ ! As long as
there is a task with the name you have listed present, the IMS will understand you want to
gart it. Thisis useful for times in which you want to make your tasks seem like commands
themsdves:

Ingtead of:
00: 00: 00: 10 Start SubTask

You only need:
00: 00: 00: 10 SubTask

Whenyou Start (or Call) atask, you can pass parameters. This dlows you to provide
information to a task without having to put data in a varidble firsd. The data is accessed via
the param resource. The param resource acts just like a variable resource, but is specific to
thetask at thetime of being cdled. The param resources are replaced with whatever
resource is put after the task to Sart, in order.

- Add -

Page#14

00: 00: 00: 01 SetVar var:1 param 1
00: 00: 00: 01 AddVar var:1 param 2

00: 00: 00: 01 Start Add 9 3
The result of darting this task is that var:1 will contain 12.

00: 00: 00: 01 Set var:2 “Tyler Durden”
00: 00: 00: 01 Start Add “And that's how | met “ var:2

The result of gtarting this task is thet var:1 will contain “And that's how | met Tyler Durden”

Stop
Stop <task>

Stopping atask is aseasy as starting it. When you stop a task, it will cease execution on the
following frame, regardless of what task you stop, or how many. Once you stop it, you can
dart it again, and it will sart from the beginning.

00: 00: 00: 10 Stop SubTask

Pause
Pause <task>

Pausing a task calees it to Sop execution like Stopdoes, but unlike Stop, whenyou Sart it
again, it garts from the command that you paused it on. When you pause a task, it will cease
execution on the following frame, regardiess of which task you pause, or how many.

Call
Call <task> <params>

Cdling a task is exactly the same as darting a task, except the origind task pauses until the
subtask completes.

- ManTa -
00: 00: 00: 10 cal |l SubTask
00: 00: 00: 15 Wite serport:1 “hello”

- SubTask -
00: 00: 00: 05 Wite serport:2 “hello”

In this example, “hdlo” is sent out serid port 2, and 5 frames laer “helo” is sent out serid
port 1. See the below time layout for an exact view:

Absolute Time (in frames)
(018 MainTask is started (from somewhere ese)

MainTask SubTask
00:00:00:01
00:00:00:02
00:00:00:03

=88

Page#15

03) 00:00:00:04

06 00:00:00:05

074 00:00:00:06

05} 00:00:00:07

02} 00:00:00:08

10 00:00:00:09

1 00:00:00:10 SubTask Started, and MainTask Paused

12 00:00:00:01

13 00:00:00:02

14 00:00:00:03

15 00:00:00:04

16 00:00:00:05 Data “hdlo” sent out serport:2
SubTask Stopped
ManTask Re-Started

17 00:00:00:11

18 00:00:00:12

19 00:00:00:13

20 00:00:00:14

2 00:00:00:15 Data “hello” sent out serport:1

MainTask Stopped

If you cdl atask on the last command of the current task, the call command is effectively
turned into astart command.

Trigger
Trigger<expresson> <task> <params>

Triggers are used to dart tasks a arbitrary times, when some event occurs, ether than a a
pre-determined time. The task will begin when the expresson listed is true. In order for the
trigger to hgppen a second or subsequent time, the expresson must go fase, then true again
for another trigger to happen. This behavior is called being edge-triggered.

00: 00: 00: 01 Trigger button:1 = ON MyTask

In the above example, the task MyTask will start when button:1 becomes ON. It is possble
and sometimes common to have multiple triggers for one task:

00: 00: 00: 01 Trigger button:1 = ON MyTask

00: 00: 00: 01 Trigger button:3 = OFF MyTask

00: 00: 00: 01 Trigger var:3 > 10 MyTask

00: 00: 00: 01 Trigger dnxinput:[var:391] <> anaoutput: 21 MyTask2
00: 00: 00: 01 Trigger vidsource:1l.status = VI DEOERROR MyTask?2

All of the above triggers will gtart the specified task when their expression is found to be true.
You can dso sart multiple tasks with the same expression:

00: 00: 00: 01 Trigger serport:19.inbuffercount > 3 M/Task
00: 00: 00: 01 Trigger serport:19.inbuffercount > 3 MyTask2

Page#16

dthough it would be esser and clearer to indead have one trigger sat MyTask and have
MyTask dat MyTask2 as its firs command.

Hereis an in-depth analyss of an expresson. An expresson compares two different things
together. You can compare a resource with another resource, or a resource with a literal
value. There are no redtrictions to the resources that you can compare. The comparison
matches the vaue of each Sde a the moment in question. With these values the comparison
is made. Here are some various resources and literds being compared to see if they are equd:

varl = var:2
val=21
diginput:1 =1
diginput:1 =var:l

dmxoutput:921 = dmxinput:129
screen:1.mousedown = anaoutput:13

var:l = 123456

var:l = “hdlo world’

vidsource:12.status = “VIDEOSTOPPED”

The comparison can be equa, not equd, less than, greater than, less than or equd to, grester
than or not equd to. Here are some examples of comparison with different operators for the
same two resources. ' You may use ether the BASIC language symbols fa comparison, or the
C language symbols, and you may mix-and-match. These first examples use the BASIC

language symbols.

var:l =3 /I equd

va:l<>3 // not equd

var:l <3 /I less than

var:l > 3 Il grester than
va:l<=3 //lessthan or equd to
varl >=3 /[gregter than or equd to

Here are the same examples using the C language symbols:

var:l == Il equd

va:l!=3 /I not equa

varl <3 Il less than

var:l > 3 /I greater than
va:l<=3 //lessthan or equd to
va:l>=3 /[greater than or equal to
RemoveTriggers

RemoveTrigger s <task>

a

RemoveTriggersALL

Use RemoveTriggers to “turn off” triggers for the specified task.

00: 00: 00: 01 RenoveTriggers MyTask

Page#17

When you want dl tasks to have ther triggers removed, use:

00: 00: 00: 01 RenoveTriggers All
Note that if you have a Task named “All” and then issue the command

00: 00: 00: 01 RenoveTriggers All

RemoveTriggers will not redize you specified a task, and will remove dl triggers from dl
tasks.

End
End
The End command stops execution of the currert task immediately.

00:00:00: 01 Wite display:1l.row.1l “hello world”
00: 00: 00: 03 End
00: 00: 00: 05 Wite display:1.row 2 “goodbye cruel world”

The above would execute in this manner:

Absolute Time (in frames)
018 MainTask is started (from somewhere ese)

MainTask
02 00:00:00:01 Write display:1.row:1 “helo world”
0¢}
o 00:00:00:03 End
MainTask stopped
Label

L abel <labdname>

The label has two different purposes. It is most commonly used when you want to mark a
placeholder in your task to “jump’ to from an IF command or a GOTO command. When you
jump to a labd, you jump over any commeands in between the current execution point, and the
label, and begin executing commands from the labe down.

00: 00: 00: 01 Wite serport:1 “hello”

00: 00: 00: 01 goto DoThi s

00: 00: 00: 01 Wite serport:2 “hello” (never happens!)
00:00:00: 01 Wite serport:3 “hello” (never happens!)
00: 00: 00: 01 Label DoThis

00: 00: 00: 01 Wite serport:4 “hello”

The second purpose is Smply to have a highlighted comment between commands, and alabd
will do thet nicdy for you.

Goto
Goto <labd>

Page#18

It's hard to explain a Labd without a Goto, and it's hard to explain a Goto without a labd, o
here's the other haf of what you need to know. A goto statement tells the IMS to stop
executing the arrent set of commands, and ingtead jump to a new place in the task. Time
continues to run forward.

- Mai nTask -

00:00:00:01 set var:7 3 // init var 7 to 3 (loop 3 tines)

00: 00: 00: 01 | abel loop // loop starting here

00:00:00:01 if var:7 =0 end // if var 7 has reached 0 get out
00:00: 00: 01 on digoutput:1 // turn on lite 1 (start flash)

00: 00: 00: 05 off digoutput:1 // turn off lite 1 (stop flash)
00: 00: 00: 05 subvar var:7 1 // subtract 1 fromvar 7

00: 00: 00: 05 goto loop // |oop here!

Here Gotois usad to generate a loop within a task. Note that this is a jump backwardin the
command lis. Whenever you jump backwards, the labd is jumped to on the next frame. This
is to prevent infinite recursion on one frame.

Absolute Time (in frames)
MainTask is started (from somewhere else)

=

MainTask

00:00:00:01 st var:7 3

00:00:00:01 labe loop

00:00:00:01 if var:7 = 0 end (var:7 is 3, S0 continue)
00:00:00:01 on digoutput:1

00:00:00:05 off digoutput:1

00:00:00:05 subvar var:7 1 (var:7 isnow 2)
00:00:00:05 goto loop

00:00:00:01 labd loop

00:00:00:01 if var:7 = 0 end (va:7 is 2, S0 continue)
00:00:00:01 on digoutput:1

00:00:00:05 off digoutput:1

00:00:00:05 subver var:7 1 (var:7 is now 1)
00:00:00:05 goto loop

00:00:00:01 labd loop

00:00:00:01 if var:7 = 0 end (var:7 is 1, o continue)
00:00:00:01 on digoutput:1

00:00:00:05 off digoutput:1

00:00:00:05 subvar var:7 1 (var:7 is now 0)
00:00:00:05 goto loop

00:00:00:01 labe logp

B RBERRREREEBB8ICIIIZIGFREICLRR

Page#19

17 00:00:00:01 if var:7 = 0 end (var:7 is O, s0 end task immediately)
MainTask Stopped

The example above loops 3 times of 5 frames each, exactly as was asked. In Absolute frames,
MainTask started one frame later from wherever it was caled, and the loop (in this example)
actudly darts the fourth loop (one additiona frame) before checking to see that it should
terminate. Therefore 3 x 5 = 15 frames plus the two additiond frames is 17.

If
If <expresson> <command>

The IF command, like Trigger, evduaes an expresson, and, if the expresson is true,
executes the command listed. There are 3 types of possble commands. Goto, Sart, and
End. Each of these commands behaves exactly as if it were given without the |f part of the
statement.

00: 00: 00: 01 Label I oop

00:00:00: 01 If diginput:191 = OFF Start MTask2
00: 00: 00: 01 If dnxoutput: 1001 = 45 End
00:00:00: 01 If var:2 <= var:3 CGoto | oop

Note that an IF looks at the currentdate of the resource in question. This behavior is known
asbeing level-triggered. Although there is no “triggering” going on, this term is used to
denote when aresources’ current state is used directly.

The All-important AUTOBEGIN task

To dart, you only need one task. It is caled AUTOBEGIN. You MUST have this task, If
you do not, no tasks will ever be run, and your show will not hgppen. AUTOBEGIN islike
the autoexec.bat file for those of you who remember running DOSonaPC. The
AUTOBEGIN task executes when you first upload a show, or when the IMS is restarted. To
“make’ atask AUTOBEGIN, smply name it that. In the IMS, only quoted strings are case
sendtive, so you may name it AutoBegin, AUTOBEGIN, autobegin, AuToBeGIN, or any
other combination you like. It does not have to be the firg task in the show, adthough most
programmers commonly make it the first task.

The AUTOBEGIN task is the best place to “setup” your show. As you learn more about
Integrated Media Server programming in the pages to follow, youll learn more and more
commands that can be put n AUTOBEGIN.

Variable Resources (var)

Once you understand how tasks work and interact, you can start sectioning off your
programming according to your goads. However, it's hard to program your resources without
keeping track of what youre doing. The dtate of your show and various data eements can be
dored in varigbles. Variables can actudly gtore 3 different kinds of data: integer numbers,
floating point numbers and gtrings. You can have asmany variables as you need, up to
4,294,967,295 in fact. However, if you redly used that many variables (over four billion),
you would eat up 16 Gigabytes of memory for the variables done, so in practice, you can't
redly use that many unless you purchase your IMS with a specid memory card to increase
your memory to more than 16 Gigabytes. It's certainly safe to say that fa dmogt any
goplication imagineble, 10,000 variables should be enough. But it's nice to know you can use
more if you redly do need more —they're waiting for you to usel

Page#20

General Usage

To cregte a variable, smply sart usng it by setting it to some vaue. It's important to st your
vaiable to some vaue firdt, before you use the varigble for some purpose, because otherwise
the script won't know what type of varigble it's supposed to be, and your later comparison
won't be of much use if the vaue you are comparing is not meaningful. Generdly, you can
set avaridble to a fixed literd vaue, the vaue of another varigble, or to the value of another
resource. The Set command is the lifeblood of Braintrugt. It will dlow you to set dmost
anything to dmogt anything. Here well show you a few examples of setting a varigble to a

vaue

Sdting var:1 to a literd integer number

00:00:00: 01 Set var:1 19 // literal integer nunber

Setting var:1 to a literd floaing point number

00: 00: 00: 01 Set var:1 123. 456

Setting var:1 to a literd gtring of characters

00: 00: 00: 01 Set var:1 “hello world”

Sating var:l to both the typeand valueof var:2. Var:2 could be an integer number, a
floating-point number, or adring. Regardless of what type of variable var:1 used to be, it's
now the same type as var:2.

00: 00: 00: 01 Set var:1 var:?2

Sdting var:1 to both the type (integer) and the value of the resource (0 or 1) since a digitd
input can only be either O or 1 (on or off).

00: 00: 00: 01 Set var:1 diginput:3

Sating var:l to both the type (integer) and the value of the resource (0-255)

00: 00: 00: 01 Set var:1 dnxout put: 92

Sdting var:1 to both the type(string) and the valueof the resource (any string of characters)

00: 00: 00: 01 Set var:1 vidsource: 1. st atustext

Integer Variables

Integer variables sore numbers between 0 and 4,294,967,295. Integer variables (and
resources for that matter) can aso be treated as Booleanvaridiles That isto say, you can use
an integer variable to store a “true’ or “fdse’. The vaiadle dill Soresa 0 or a 1, bt

effectively—you—ecan—forgetabedt-that Braintrust has severd reserved values which you can
use. This table lists the Reserved Vdues, which can be used with both variables and
resources in generd.

Reserved ValueName Value Usage Examples

Page#21

OFF 0 Trigger diginput:3 = OFF

Set var:2 OFF
FALSE 0 If var:69 = FALSE

Set anaoutput:1 FALSE
ON 1 Set digoutput:92 ON

Set dmxoutput:1 ON

If anainput:19 = ON
TRUE 1 Set var:3 TRUE

Trigger var:101 =TRUE

If var:15 = TRUE

Set digoutput:1023 TRUE
These are very common ways of usng Reserved Vaues.
Integer values are great for storing intermediate vaues:

00: 00: 00: 01 Set var:1 dmxinput:1 // first dnx input channel
00: 00: 00: 01 Set dnxoutput:1 var:1 // first dnmx output channel

You dont have to use intermediate varigbles, but sometimes it's useful:

00: 00: 00: 01 Set dmxoutput: 1l dnxinput:1

Usudly youll have one or more places in your show where a variable takes on avaue. In
this case, were contriving the values, as long as they're unique, and we're just checking later
to see what it was s to...

00: 00: 00: 01 Set var:1 1 // run first show

somewhere ese...

00: 00: 00: 01 Set var:1 2 // run second show

then youll have a place in your show where you check to see what the vaue of the varigble is

00:00:00:01 If var:1 == 1 Start FirstShow
00:00:00:01 If var:1 == 2 Start SecondShow

Sometimes you want to use a variable to store a caculation:

00: 00: 00: 01 Set var:1 anainput:6 // get value of old position
Then later you check again...

00: 00: 00: 01 Set var:2 anainput:6 // get value of new position
Then you want to do a caculation:

00: 00: 00: 01 Subvar var:1 var:2 // subtract var:2 fromvar:1

Then test the vaue for whatever reason:

Page#22

00:00:00:01 If var:1 < 2 Goto Error // pneumatics out of range

Floating-Point Variables

Hoating-point variables are dways used for cdculations. They could, for example, be usd
for reading the vaue of a sensor that returns floating point numbers,

00: 00: 00: 01 Call GCetSensorData // puts sensor value in var:1
00: 00: 00: 01 FornmatVar var:2 “The sensor reads: %.6f"” var:1
00:00:00: 01 Wite display:1.row 1 var:2 // put on LCD

a for caculating prices and taxes for a cash register / receipt printer:

00: 00: 00: 01 Set var:2 var:1 // keep var:1, use tenp var:2
00: 00: 00: 01 Set var:3 0.825 // Los Angel es Tax

00: 00: 00: 01 Mul tiplyVar var:2 var:3 // get sales tax

00: 00: 00: 01 Addvar var:1 var:2 // total for customer

00: 00: 00: 01 Format Var var:4 “Your total is $%. 2" var:1
00: 00: 00: 01 Wite serport:1 var:4 // print to receipt

String Variables

String variables are dmogt dways used for reading by humans, whether in a log, printout, on
the sareen, or esewhere. They can dso be used for sending messages to serid or ethernet
devices, and for those devices that require string commands be sent to them.

Here is an example of sending the error message from a video card to a Display LCD
00: 00: 00: 01 Wite display:1l.row 2 vidsource:1.errortext

In the section explaining Hoating-point variables we used two examples of dring variables.
In the firs example, the string variable was sent to a display LCD. In the second example, the
dring variable was sent out a seria port connected to a therma receipt printer.

Variable Commands

Some commands that are used for al resources apply to variables as wel. Although these
commands are explained elsewhere, a brief syntax description will be listed here:

Set <resourceto> <resourcefrom>

Write <serport> <resourcel> .. <resourceN>

Display <display> [row] [col] <resource>

If (expressonterm equate expressionterm) <command>

Trigger (expressonterm equate expressonterm) <task> <params>

Some commands are specifically used with variables:

AddVar <vato> <varfromorlitera>
SubtractVar <varto> <vafromorliteral>
MultiplyVar <varto> <varfromorliteral>
DivideVar <varto> <varfromorliteral>
ModVar <varto> <varfromorliteral>

Page#23

OrVar <varto> <varfromorliteral>

AndVar <varto> <farfromorliteral>

XorVar <varto> <varfromorliteral>

FormatVar <varto> <formatstring> <resourcel>..<resourceN>

AddVar
AddVar adds the second vdue to the firg variable, and leaves the result in the firs variable.

SubtractVar

SubtractVar subtracts the second vaue from the first variable, and leaves the reault in the first
vaiable.

MultiplyVar

MultiplyVar multiplies the first variable by the second vaue, and leaves the result in the first
vaidble.

DivideVar

DivideVar divides the firg variable by the second vaue, and leaves the reault in the first
vaidble.

ModVar

ModVar divides the firgt varigble by the second vaue, and leaves the REMAINDER inthe
firg variable.

OrVar

OrVar bit-wise Ors the firgt variable by the second vaue, and leaves the reault in the first
vaiable.

AndVar

AndVar bit-wistANDs the firg variable with the second value, and leaves the result in the
firg variable,

XorVar

XorVar bit-wise XORs the firs variable with the second vaue, and leaves the result in the
firg variable,

FormatVar

FormatVar is the most complicated command in Braintrust. Pages and pages could be written
about it. Suffice it to say that FormatVar works identicaly to the very famous and ubiquitous
to programmers C language printf command. If you're reading this right now and youre in a
pickle to make FormatVar do something very complex or fancy, your best bet is to look up
printf on the Internet or in any beginning C language book.

However, we won't leave you hanging completely...

FormatVar's syntax is:

FormatVar <varto> <formatstring> <resourcel> .. <resourceN>

Page#24

<varto> is the variable you wish the resulting formatted dgring to be sored in.
<formatstring> is the string template you want to fit your variadles into.

In this Smple example, <formatstring> is put into <varto> unmodified:
00: 00: 00: 01 FormatVvar var:1 “The nonth is January”

But FormatVar is best a making a nice string when you don't know dl the data. This
example uses printf's % symbol to replace pat of the gring with another variable. The letter
after the % indicates what format of varidble it is. In this casg, it's a dring. You then have to
lig, in order, what varigble you want to replace it with:

00: 00: 00: 01 Set var:2 “January”
00: 00: 00: 01 Set var:3 “February”
00: 00: 00: 01 FormatVar var:1 “The month is %" var:?2

Which would give you the result: The month is January

You can do this with multiple variables and replacements:

00: 00: 00: 01 Set var:2 “Monday”

00: 00: 00: 01 Set var:3 15

00: 00: 00: 01 Set var:4 “wMarch”

00: 00: 00: 01 Formmt Var var:1 “Date: % %l 2004” var:4 var:3

Which would give you the result: Date: March 15, 2004

If you want to use the % symbol in your string text, use it twice to clue in FormaVar that
that's what you want to do.

00: 00: 00: 01 Set var2 50
00: 00: 00: 01 FormatVar var:3 “The discount is %%0 of f” var: 2

Which would give you the result: The discount is 50% off
Here are various format types.

Type Description

%d integer number

%f floaing-point number
%h hexidecima number
%s gring

Sometimes it's ussful to specify the precison of the varigble. That is, the number of digits to
digolay for an integer number or floating-point number

%2.2h
%4.2f

Page#25

The number to the left of the period indicates how many totd digits to display, and the
number to the right of the period indicates how many digits should be displayed to the right of
adecimd point in a floating point number. Here are some examples

Typeand Precision Value Result Formatted
%2.2h 3 le
%2.2H 3 1E

%d 3 3

%1d 3 3

%2d 3 3

%3d 3 031

%f 3 3
%2.2f 31123 3112
%6.3f 31123 031123
%6.1f 31123 00031.1
%s “hdla” hdlo

%s “goodbye’ goodbye

MPEG Standard-Def and Hi-Def Video Resources (video)

The Mpeg Decoder video resource is the resource we are best known for. The outputs are
broadcast qudity, the bitsper-second rate is unmatched, and the audio is clean. But what
redly sets us apart is our intense accuracy. The IMS platform in generd provides a 60" of a
second accuracy, which will perfectly match to exch field (hdf of a video frame) when video
resources are added. The audio coming out of the decoders will be sample accurate. This
means that if the encoded audio is 48 kHz, or 48,000 samples per second, each decoder, even
when synchronized with other decoders, will output exactly the same number of samples of
audio, a exactly the same timelrate per fidd. We can loop video with audio with mpeg files
as andl as 5 frames with perfect playback accuracy. We can loop video files without audio
down to 1 (one, yes you read tha right) frame. We can jump from playing any file to playing
any other file ssamlesdy, even if it's in the middle of the file. We can jump from a looping
file to any other file seamlesdy as well. We can pause on any frame of any file flawvlesdy.
Of course other IMS subsystems can come into play. We can, for example, jump from
looping a 3 frame mpeg file on two synchronized standard-definition decoders to playing
another mpeg file seamlesdy, while sending a serid message to a video switcher in the
vertica interval causing the video switcher to switch outputs on the standard def decoders
before the firgt fidd of the new begins playing, while causng one high-definition decodersto
dat playback of a hidef mpeg file 2 frames dter the new standard definition file loop
seamless switches, while setting an andogue output attached to the limb of an animated
character to a value one field after that, ensuring perfect audio lip synch with the audio, while
sending an ethernet message to the Parkwide Attraction Monitoringh System that the various
subsystems in that attraction are performing flawlesdy for the 400" day in a row...

Whew!
There are attractions out there right now that utilize this sophidtication daily.
Working with Disney dtractions for so many years caused us to have a clear appreciation for

the importance of accuracy. That accuracy is not easy, and it came a a huge development
price. But the results are astounding, and worth it. Every subsystem benefits from being

Page#26

forced to be as accurate as the video subsystem. Everything, and | do mean everything, can
be made to be very precise.

MPEG Decoder resources, whether high-definition or standard-definition, arerepresented by
the IMS video resource cdled “video.” Files are loaded into the decoder, then started, then
sopped. The basic method for getting MPEG files into the decoder is with the Queue
commeand. Video playback is started via the Start command, and stopped with the Stop
commeand.

Here is the most basc show video example imaginable: Playback d one file from gart to
finish:

00: 00: 00: 01 Start vidsource:1 “nyfile.npg”

See how easy that was? One line of code. Need it explained?

Here is the second most basic show video example imaginable: Looping ore file
00: 00: 00: 01 Start vidsource:1 “nyfile.nmpg” |oop

Here's an example of playing two files back to back on three decoders and looping the second
st of files Remember that the video and audio will be in perfect synch:

00: 00: 00: 01 Queue vidsource: 1-3 “nyfile.npg”
00: 00: 00: 01 Start vidsource:1-3
00: 00: 00: 01 Queue vidsource: 1-3 “nyfile2. mpg” | oop

You want something fancier? How about looping three different 10 second, 3 frame MPEG
files on three different decoders, then, after they loop exactly 4 times, seamlesdy trangtion to
playing back another file synchronoudy, and on top of that, add in another decoder to match
in pefect synch:

00: 00: 00: 01 Queue vidsource:1 “nyfilel. npg” | oop
00: 00: 00: 01 Queue vidsource:2 “nyfile2. npg” | oop
00: 00: 00: 01 Queue vidsource:3 “nyfile3. npg” | oop
00: 00: 00: 01 Queue vidsource: 4 “nyfil e4. mpg”

00: 00: 00: 10 Start vidsource:1-3

00: 00: 35: 00 Queue vidsource: 1-3 “nyfil e4. npg”

00: 00: 40: 22 Start vidsource: 4

You want something fancier ill? What if you don't know which of two different files you
want to play on decoder 2 until one frame before dl four decoders are supposed to dart
playing together? Let's say you dso want to fade to black on decoder 1 dowly over the entire
40 seconds 12 frames, S0 that it's exactly 50% black on the exact frame that al four decoders
dat playing the lagt file. Let's say then that you want decoder 4 to keep playing this 15
second file (loop it) while the other 3 decoders stop, and 21 hours 5 minutes, 4 seconds later
(exactly to the frame) you want to sop decoder 4, which you know, even after 5060 times of
looping, the video will be on the files 119™ frame of vidsource:

00: 00: 00: 01 Queue vidsource:1 “nyfilel. npg” | oop
00: 00: 00: 01 Queue vidsource:2 “nyfile2. npg” | oop

Page#27

00: 00: 00: 01 Open vidsource: 2 “newfil el. npg”

00: 00: 00: 01 Open vidsource: 2 “newfil e2. npg”

00: 00: 00: 01 Queue vidsource: 3 “nyfile3. npg” | oop

00: 00: 00: 01 Queue vidsource: 4 “nyfiled4. mpg” | oop

00: 00: 00: 10 Start vidsource:1-3

00: 00: 00: 10 Ranp vi dout put: 1. vi deol evel 50% 00: 00: 40: 12
00: 00: 35: 00 Queue vidsource:1 “nyfiled. npg”

00: 00: 35: 00 Queue vidsource: 3 “nyfiled. npg”

00: 00: 40: 21 Label It's the frame before- figure it out now
00: 00: 40: 21 If var:1 == 1 Goto UseFilel

00: 00: 40: 21 If var:2 == 2 Goto UseFil e2

00: 00: 40: 21 End

00: 00: 40: 21 Label UseFil el

00: 00: 40: 21 Queue vidsource: 2 “newfilel. mpg”

00: 00: 40: 21 End

00: 00: 40: 21 Label UseFil e2

00: 00: 40: 21 Queue vidsource:2 “newfil e2. npg”

00: 00: 40: 21 End

00: 00: 40: 22 Start vidsource: 4

21:05: 44: 22 Stop vidsource: 4

Ok, s0 you get the idea. Let's get back to bascs To play video files, you need to setup the
output format of the video card if the default is not desired, you need to gpen the files you
intend to play, Queue them when the time comes, and then Start and Stop them.

Video File Locations

All mpeg video files should be put in the directory \ims\shows\default\media
To access these files, you smply use the filename, like this.

Sart vidsource:l “myfilempg”

However, you may aso put files in subdirectories of \ims\showddefault\media. For example,
you may choose to breskup files between preshow and mainshow.

C:\imsshows\default\media\preshow\queueareal.mpg
CAimdshows\ default\media\preshow\queuearea2.mpg

C:\imsshows\default\media\preshow\ preshow.mpg
C:\imsshows\default\media\mainshow \l eft. mpg
C:\imsshows\default\media\mainshow \centre.mpg
C:\imsshows\default\media\mainshow \right.mpg

S0 you would play these files in Brantrug like this

:1 “preshow queuear eal. npg”
Start vidsource: 1l “preshow queuearea2. npg”
Start vidsource:1 “preshow preshow npg”
Start vidsource:1l “mainshow | eft. npg”
Start vidsource:1 “mai nshow\ centre. npg”
Start vidsource:1 “mai nshow\ right. npg”

Start vidsource

Page#28

Note that you do NOT reference the file path prior to the subdirectory.

Now let's explain each of the commands n detal, then give some reabworld smple examples
of how video would be used.

Video Commands

Open
Open<video> <file> [options]

Opensfiles into the decoders, waiting to be queued. You can Openas many files as youd
like. Open loads the beginning part of the specified file into memory (see the memory option
for how to load the entire file into memory). There is no importance in the order in which
files are opened. They are smply loaded into a different dot. Opening a file reduces the time
aqueue takes later, and once a file is opened, it stays opened until specificaly closed.
Opening alows you to specify specid parameters that will affect playback later. See the
memory option and cther options below.

00: 00: 00: 01 Open vidsource:1 “filel. mpg”
00: 00: 00: 01 Open vidsource:1 “file2. npg”

00: 00: 00: 01 Open vidsource: 2-5 “fil e3. mpg”

If you want the opened file to be played back from memory, use the memory option. This
will load the entire file into memory a the time of the Open, o it's somewhat Sower to use
this option. The norma default behavior is for Opento load only the firg portion of the file
into memory, and then load the rest of the file as needed into memory off the hard disc as
playback ensues. Thedefault way isfasto Open, bu hard disc bandwidth will be
diminished for each decoder that plays back from hard disc. The three factors that determine
acceptable bandwidth for hard disc playback are

1) The speed of the hard disc/RAID drives configuration sdected for the IMS

2) Thenumber of decoders playing back from hard disc smultaneoudy

3) The bitrate of the MPEG files

Use the memory option when you can.

So to summarize, you should cdl Open anytime you know that you're going to be cdling
Queue when it has to be frame accurate, and you want to make sure Queue can be as fast as

possble
Queue
Queue <video> <file> [optiong]

Queue opens and loads MPEG video files into the decoders, ready for playback. Queue
actualy does two things. It cdls Open to open the file if it is not dready open from a
previous Openor Queue command, and it tells the decoder to get ready to play it. The Open
part of the job takes a while, but the second part of the command takes less than a frame. If
the file is alreadyopened via the Open command (see the O pen command) then the entire
length of the Queue operation is one frame.

Page#29

If the decoder is stopped when you issue the Queue command, the file specified will be
loaded into the decoder so thet it will play when you issue a Start command. If there was a
previous file queued (that wasn't played) when you issue the Queue command, the new
Queued file will replace the old one.

00: 00: 00: 01 Queue vidsource:1 “filel. npg”
00: 00: 00: 01 Queue vidsource:1 “file2.npg” // replaces

filel. nmpg
00: 00: 00: 01 Start vidsource:1 // file2.nmpg is played

If you want to loop a file add the loop option to the Queue commands.

00: 00: 00: 01 Queue vidsource:1 “file5.nmpg” |oop

If you dont know what file youre going to play next until just before the end of the current
file, use Queue after starting the decoder. Just make sure you issue a new Queue command
during the currently playing file. Aslong as you continue to issue a new Queue command
during the currently playing file, video will continue to play through esch file without
gopping, adinfinitum.

00: 00: 00: 01 Queue vidsource:1 “filel. npg”
00: 00: 00: 01 Start vidsource:1

00: 02: 00: 00 Queue vidsource:1 “file2.npg”

If you Queue a file once a decoder has started playing, and then Queue another file, the
second Queue replaces the dready queued file. This dlows you to change your mind on the

fly.

00: 00: 00: 01 Queue vidsource:1 “filel. npg”

00: 00: 00: 01 Start vidsource:1

00: 02: 00: 00 Queue vidsource:1 “file2. npg”

00: 02: 00: 00 Queue vidsource:1 “file3.npg” // replaces

file2.npg
file3.:mpg will play seamledy after filel.mpg, and file2mpg is not involved.

If you changed your mind, and dont want to play any file after filel.mpg, use the Queue
command with the “clear” option

00: 00: 00: 01 Queue vidsource:1 “filel. npg”
00: 00: 00: 01 Start vidsource:1

00: 00: 05: 00 Queue vidsource:1 “file2. npg”
00: 02: 00: 00 Queue vidsource: 1 clear

Note that Queue Clear does not stop the decoder from playing, only takes away the next file
from the queue to play next.

You can dso issue a Queue vidsource:l unlo op

00: 00: 00: 01 Start vidsource:1 “filel. mpg” | oop
00: 10: 00: 00 Queue vidsource: 1 unl oop

Page#30

This will cause the looping to stop, but not the decoder. In other words, the decoder will
finish playing the exiging file and op.

If you want the queued file to be played back from memory, use the memory option. This
will load the entire file into memory a the time of Queue, S0 it's somewhat dower to use this
option. The normd default behavior is for Queue to load only the first portion of the file into
memory, and then load the rest of the file as needed into memory off the hard disc as playback
ensues. The default way isfast to Queue, but hard disc bandwidth will be diminished for
each decoder that plays back from hard disc. The three factors that determine acceptable
bandwidth for hard disc playback are

4) The speed of the hard disc/RAID drives configuration sdected for the IMS

5) The number of decoders playing back from hard disc smultaneoudy

6) The bitrate of the MPEG files

Use the memory option when you can afford to.

Note that Queue actudly is cdling Open to do the open, regardless of whether it's in memory
or not.

00: 00: 00: 01 Queue vidsource:1 “filel. mpg” nenory

If you need to jump outof a playing file to another file, even if it's a looping file or aplaylist
of looping files, use Start again. The default behavior for Queueis to queue the file to
seamledy play a the end of the currently playing file. Cdling Start when you're adready
playing causes playback to jump to the specified file immediately.

Here is an example of jumping out of a looping file immediately to a new file. In this
example, wewill have two tasks. The first task loops a playlist of queued “queue line ared’
files, and the second task is started by a “stop show” button being pressed by a ride operator.
In this example, the first loop of files is being played out of memory, and the second loop is
being played off the hard disc.

- AutoBegin-
00: 00: 00: 01 Trigger (diginput:101 == ON) StopShowTask

00: 00: 00: 01 Start vidsource:1l “queueareafil e3. npg” nenory
| oop

- StopShowTask -
00: 00: 00: 01 Start vidsource:1 “stopshowfil e.npg”

Start
Sart <video> [options]

Weve been usng the Start command in previous examples while demongrating the Queue
command. Start begins playback on the specified decoders.

00: 00: 00: 01 Start vidsource:1l

Multiple decoders may be Sarted a the same time. Playback will dways be synchronous.

Page#31

00: 00: 00: 01 Start vidsource:1-3

Playback actudly starts on the next frame. Any decoders started on the same frame will play
on the next frame, and playback synchronoudy, even if they're from different Start
commands:

00: 00: 00: 01 Start vidsource:1-3
00: 00: 00: 01 Start vidsource:5
00: 00: 00: 01 Start vidsource:7-9

You can specify a file to play, and if youre stopped, the decoder will Queue the file before
playing it.

00: 00: 00: 01 Start vidsource:1-3 “nyfile.npg”
If you want to pass the memory option to Queue (and to Open) just add the word “memory”
after the file to queue and then dart.

00: 00: 00: 01 Start vidsource:1-3 “nyfile.npg” nenory

Stop
Stop <video>

Stop sops the specified decoders from playing back. Payback will sop on the next frame.
The syntax and rules are the same as for the Sart command.

00: 00: 00: 01 Stop vidsource: 1-9

After Stopping playback with the Stop command, the queued file, as it existed at the time of
the Stop command, will be sarted again. This is most useful when a playlist is created with
the Queue command before the Start command is issued. If the decoders are sopped, the
playlig can be begin agan smply by issuing the Sart command again.

Pause

Pause <video>

Pause pauses (freezes) the specified decoders. Playback will pause on the next frame. The
syntax and rules are the same for the Stat command.

00: 00: 00: 01 Pause vi dsource: 1-3

To unpause, issue a Start command, and the decoders will resume where they Ieft off in the
file they were on. The queue for the decoders stays intact as well.
Playlists

As you dready know, you can playback more then one file seamlesdy by queueing afile,
darting the decoder, and continuing to queue files repeatedly. Alternatively, you can create a
playlis of queued files if you know ahead of time what files you want to queuein order.

You can have as many playlists as desred, and use any created playlist as if you were playing
one file. This gpplies to audio playback as wel, which we will discuss later.

Page#3

00: 00: 00: 01 Queue playlist:1 VIDECFILE “filel. npg”
00: 00: 00: 01 Queue playlist:1 VIDECFILE “file2.npg” nenory
00: 00: 00: 01 Queue playlist:1 VIDEOFILE “file3. nmpg” nenory

(Note that in this arbitrary example, the firg file is not queued to memory. It does not matter
whether the files you queue in the playlist are opened to memory or opened to hard disc).

Later you use this playlis when queuing to a decoder:

00: 00: 00: 01 Queue video: 3 playlist:1

All the files in the playlig will play in order, as if you had queued them manudly.
You can loop playligs asiif it were just one long file as well.

00: 00: 00: 01 Queue video:9 playlist:6 |oop

You can change an entry (file to play) in the playlist, after it has been created by issuing the
following command (example):

00: 00: 00: 01 Set playlist:4.entry: 16 “fil €96. npg”
You can deete an entire playlist by issuing:

00: 00: 00: 01 Delete playlist:7

a you can ddete just one entry in a playlist:

00: 00: 00: 01 Delete playlist:2.entry:8

Video Objects

Video resources have severd object properties. Some of the objects are sdttings that can be

changed programatically, others are set by the IMS system for wser interrogation, and ill
others are both.

Mixing/Routing

Currently, there is no on-board mixing/routing for video. This means there is a fixed, one-to-
one correspondence between the vidsource and the vidoutput. For example, the
corresponding output of vidsourcer13 is vidoutput:13. Although you cannot substitute
vidsources for vidoutputs, the index referring to ether will aways be the same, as with the
example for 13, aove.

Output Level and Fading

You can s the leve of the output of either video or audio immediatdy using the Set
commeand, or over time usng the Ramp command (for Fading). For video, the leve
represents how much of the picture is showing, and how much is black. For audio, the leve
represents the gain or volume of the audio.

Let's st the audio levd to 75% for 10 seconds, then set it back to 100%.

Page#33

00: 00: 00: 01 Set vidout put: 1. audi ol evel 75%
00: 00: 10: 00 Set vi doutput: 1. audi ol evel 100%

Let's st the video leve to 60% picture, 40% black and leave it there.
00: 00: 00: 01 set vidoutput: 1l.videol evel 60%

You can dso Fade the video or audio over time udng the Ramp command. This example
fades to black over a 3 second period.

00: 00: 00: 01 Ranp vi dout put: 1. vi deol evel 0% 00: 03: 00: 00
This example fades audio to nothing over a 1 sscond period.

00: 00: 00: 01 Ranp vi dout put: 1. audi ol evel 0% 00: 02: 00: 00
This example fades video down then back up again between files

00: 00: 00: 01 Queue vidoutput:1 “firstfile.npg”

00: 00: 02: 00 Start vidoutput:1

00: 01: 02: 00 Ranp vi dout put: 1. vi deol evel 0% 00: 02: 00: 00
00: 01: 04: 00 Queue vidout put:1 “secondfile.nmpg”

00: 01: 04: 02 Ranp vi dout put: 1. vi deol evel 100% 00: 02: 00: 00

Captioning
Set this object to true if Closed Captioning is desred on the line 21 of the video. Make sure
your mpeg file has Closed Captioning Data for the file in quetion.

00: 00: 00: 01 Set vidoutput:1l.captioning true
00: 00: 00: 01 Set vidoutput: 1. captioning on
00: 00: 00: 01 Set vidoutput:l.captioning 1

00: 00: 00: 01 Set vidoutput:1.captioning off

Of course, as dways, you can do slly things if you want to. You never know what unique
show dgtuations will arise which may require these rare options:

00: 00: 00: 01 Set vidout put: 1. captioning diginput:3

Format

Toinitidize the video card output formet, use the Format object property. The default output
format for standarddefinition decoders is NTSC. Thedefault output format for high-
definition decoders is 10801 _2997 RGBHV.

00: 00: 00: 01 Set vidoutput:l.format PAL
00: 00: 00: 01 Set vidoutput:1l. format 10801 2997 YPBPR

Here is alig of dl of the dlowed video formats for the regular sandard definition decoders:

NTSC
PAL

Page#34

Here is a lig of dl of the dlowed video formats for the standard definition decoders with the
RGB option.

NTSC

PAL
4801_RGB
4801 _RGBHV
4801_YPBPR
5761 _RGB
576]_RGBHV
5761_YPBPR

Hereis a lig of dl of the dlowed video formats for high definition decoders

NTSC
PAL

1080 2997 RGB
10801 _2997_RGBHV
108012997 YPBPR
10801_3000_RGB
10801 _3000_ RGBHV
10801_3000_YPBPR
720P_5994 RGB
720P_5994 RGBHV
720P_5994_YPBPR
720P_5994_YPBPR
720P_6000_ RGB
720P_6000 RGBHV
720P_6000_Y PBPR

Status and StatusText

These are read-only objects that inform the user of the video resource playing status. As read
only files, they cannot be set by the user, but instead are sat by the video subsystem as the
status charges

The Status object isan integer number which can easily be triggered or compared to our pre-
defined vaues.

00: 00: 00: 01 Set var:1 vidsource: 1. status

00: 00: 00: 01 Trigger vidsource: l.status = STATUSSTARTED
Pl ayi ng

00: 00: 00: 01 | f vidsource: 1l.status = STATUSSTARTED Got o
Pl ayi ng

Vdid vdues for the Status Object Property are:
STATUSSTARTED

STATUSSTOPPED
STATUSPAUSED

Page#35

The StatusT ext objects isadring vdue used mainly for logging or for displaying to a human
due to some condition. This object’s textud vaue will dways be set a the same time as the
Status object. They have the same content, but Status is used to make decisions with and
StatusText is used to display to humans (or Klingons that spesk English).

00: 00: 00: 01 Set var:1 vidsource: 1. statustext
00: 00: 00: 01 Wite serport: 1 vidsource: 1. statustext
00: 00: 00: 01 Wite display:1l.row 2 vidsource: 1. statustext

Error and Error Text

These are objects which inform the user what went wrong with the corresponding video
resource. They are not changed by the system until there is a new error. If you are finished
using the information when an error occurs, you may resst to some nonrerror condition, or
you may leave the error message there until the next error occurs.

The Error property is an integer number which can easly be triggered or tested in some
way, the same way as Status.

00: 00: 00: 01 Set var:1 vidsource:1l.error

00: 00: 00: 01 Trigger vidsource:l.error != NOERROR

Error Vi deol

00: 00: 00: 01 | f vidsource:1.error = ERRORFI LEM SSI NG Got o
NoFi | e

Vdid vaues for the Error doject are:

ERRORNONE
ERRORMISSINGFILE
ERRORNOTQUEUED
ERRORQUEUING
ERROROPENING
ERRORCLOSING
ERRORINITIALIZING
ERRORSTOPPING
ERRORLOOPING
ERRORMUTING
ERRORCUEING
ERRORSETTINGOUTPUTFORMAT
ERRORSETTINGGENLOCK
ERRORSETTINGCAPTIONING

The Error Textobject isadring vaue used manly for logging or display, the same way that
StatusT ext is usad.

00: 00: 00: 01 Set var:1 vidsource: l.errortext
00: 00: 00: 01 Wite serport:1 vidsource: 1. errortext
00: 00: 00: 01 Wite display:1.row. 2 vidsource: 1. errortext

Common Examples of Video Playback

Page#36

Suppose you want to loop afile dl day long on a standard definition decoder. The NTSC
output format is fine, and it is the default, S0 you don't need to set anything. Asagamdl file, it
will play mary times soyou decide you warnt it to play out of memory. You use task
Daymode to gart this looping file up, and task Nightmode to Sop it.

- Daymode-
00: 00: 00: 01 Start vidsource:1 “loopingfile.npg” nmenory | oop

- Nightmode -
00: 00: 00: 01 Stop vidsource:1

You want to playback a file and reload it for a ride track trigger. This time, you need to
playback files in PAL. Inthisfirg example, you know the length of the
TinkerbellFlittersmpg file, so you just queue it after it plays

- AutoBegin-

00: 00: 00: 01 Set vidoutput: 1. format PAL

00: 00: 00: 01 Queue vidsource:1 “Tinkerbel | Flitters. npg”
00: 00: 00: 01 Trigger diginput:3 = OFF GoTi nk

-GoTink -
00: 00: 00: 01 Start vidsource:1
00: 00: 17: 15 Queue vidsource:1 “Tinkerbel |l Flitters. npg”

In this second example, the length of TinkerbelIHittersmpg is not known, or it may change
after the media is updated, or you just want the IMS to handle reloading it for you. So, you
use a trigger of the Status object compared to STATUSSTOPPED (tinkerbelIflittersmpg
ends) to run task LoadTink, which queues the file to run agan)

- AutoBegin-

00: 00: 00: 01 Set vidoutput:l.fornmat PAL

00: 00: 00: 01 Queue vidsource:1 “Tinkerbel |l Flitters. npg”
00: 00: 00: 01 Trigger diginput:3 = OFF GoTi nk

00: 00: 00: 01 Trigger vidsource:1l.status = STATUSSTOPPED
LoadTi nk

- GoTink -
00: 00: 00: 01 Start vidsource:1

-LoadTink -
00: 00: 00: 01 Queue vidsource:1 “Tinkerbel |l Flitters. npg”

Inthis example, you want to loop a hi-definition decoder file on a hi-definition output card set
to 10801_2997_RGBHYV for a preshow. When it's time to go into the thestre, you want it to
seamlesdy jump immediately to another file while fading down during the trangtion.

- AutoBegin-

00: 00: 00: 01 Set vidoutput:1l. format 10801 2997 RGBHV

00: 00: 00: 01 Queue vidsource:1 “PreshowLoop. npg” nenory | oop
00: 00: 00: 01 Trigger diginput:19 = ON Start Show

Page#37

- Daymode-
00: 00: 00: 01 On var:1 // now in daynode
00: 00: 00: 01 Start vidsource:1 // begin looping file

- StartShow -
00: 00: 00: 01 If var:1 = OFF End // Must be in daynode

00: 00: 00: 01 Label Fade to 0% in 2 seconds

00: 00: 00: 01 Ranmp vi dout put: 1. vi deol evel 0% 00: 00: 02: 00
00: 00: 00: 01 Label Junp to new video

00: 00: 02: 01 Start vidsource:1 “NowEnteringTheatre. npg”
00: 00: 02: 03 Set vidout put: 1.videol evel 100% // back to
pi cture

Audio Resources (audsource, audoutput)

The Integrated Media Server dlows a large number of audio channds to be played back
sample-accurately, started and stopped on a frame basis, in the same manner as video. Each
audio card can have its own sample rate and resolution (unfortunately you cannot have a
different sample rate and resolution for each channel, but fortunately thet's rarely a concern).
You can mix up to four streams of audio out each audio output at different volume leves.

The IMS can play files up to 192kHz, 32 hit files.

Audio File Locations
Audio files are put in the same place as video or other files on the IMS.

CAim3shows\default\media
See the video section for details on where files are placed.

Audio Commands

Audio Resources work exactly the same as video sources, except for the object properties. It's
so0 amilar, theré's no need to repedt it here. Opens, Queues, Starts, Stops, and Playlids are dl
the same except for the .wav extension on the audio files ingead of .mpg. See the Video
Resource section for detals. WEell give an example here just so you can get a fed for it, and
then move on to the audio objects, where the differences lie.

This is an example of setting up an audio channd (output), and looping a file dl day.

- AutoBegin -

00: 00: 00: 01 Set audoutput:l.resolution 32 // 32 bit
00: 00: 00: 01 Set audout put: 1. sanpl erate 96000 // 96 kHz
00: 00: 00: 01 Start audsource:1 “nyfile.wav” nenory | oop

Audio Objects

Audio resources have severd object properties. Some of the objects are settings that can be
changed programaticaly, others are set by the IMS system for user interrogation, and ill
others are both.

Page#38

Objects that gpply to how the audio is played are objects of audoutput. Audsour cesare
channels to playback files from. Audoutputsareactua audio outputs that audsour cesplay
into. None, one, two, three, or four audsources may play into one audoutput. By defaullt,
esch audoutput has exactly one matching audsource that plays into it.

audoutput:1 receives audio from audsource:l
audoutput:2 receives audio from audsource2

audoutput:19 receives audio from audsource:19
etc.
as you will see beow, this is equivadent to these mixing commands.

00: 00: 00: 01 set audout put: 1. auxbuss: 1 audsource: 1
00: 00: 00: 01 set audout put: 2. auxbuss: 1 audsource: 2
00: 00: 00: 01 set audout put: 19. auxbuss: 1 audsource: 19

Mixing/Routing
If you want to change the default mixer setup, you can. There are four auxbuss crospoints

that dlow you to flow up to four audsources into each audoutput. Note that you can only mix
audsources from the same physica card as is the audoutput. ' You cannot mix between cards.

To st the auxbuss of an audoutput to a particular audsource, you pick the output you want to
st (1..n), the auxbuss of that output you want to set (1-4), and the audsource you want to st
(1.n).

00: 00: 00: 01 Set audout put: 1. auxbuss: 1 audsource: 2

Here is an example of mixing two playback channels into the first output, and two other
playback channels into the second output.

00: 00: 00: 01 Set audout put:
00: 00: 00: 01 Set audout put:
00: 00: 00: 01 Set audout put:
00: 00: 00: 01 Set audout put:

auxbuss: 1 audsource: 1
auxbuss: 2 audsource: 2
auxbuss: 1 audsource: 3
auxbuss: 2 audsource: 4

NN ==

To disconnect an audsource from an output, you can ether use
00: 00: 00: 01 Cl ear audout put: 1. auxbuss: 1

or you can specificdly st the auxbuss off:

00: 00: 00: 01 set audout put: 1. auxbuss: 1 OFF

Fading

You can st the levd of the audio output immediately using the Set commands. The leve
represents the gain or volume of the audio.

Let's st the audio leve to 75% for 10 seconds, then st it back to 100%.

Page#39

00: 00: 00: 01 Set audout put:1.level 75%
00: 00: 10: 00 Set audout put: 1. audi ol evel 100%

You can dso st the leve of individud auxbusses (1-4).
00: 00: 00: 01 Set audout put: 1. auxbussl evel : 2 75%

Sample Rate and Resolution

You ned to st the sample rate and resolution if your files to playback are not 16 bit 48kHz
files. Note that each physica card must be sat to the same sample rate and resolution, and
setting any output channd on that card will change the sample rate and resolution for ALL the
output channels on the card.

Vdid vdues for the SampleRate object are:

44100
48000
96000
192000

Vdid vaues for the Resolution Object Property are:

16
20// not supported yet. Upresfilesto 32 bitsfor the exact same perfor mance
24 /I not supported yet. Upresfilesto 32 bitsfor the exact same performance

00: 00: 00: 01 Set audout put: 1. sanplerate 96000
00: 00: 00: 01 Set audout put: 1. resol ution 32

Status and StatusText

These are read-only objects that inform the user of the video resource playing status. As read
only files, they cannot be set by the user, but instead are sat by the video subsystem as the
status changes

The Status object is an integer number which can eadly be triggered or compared to our pre-
defined vaues.

00: 00: 00: 01 Set var:1 audsource: 1. status

00: 00: 00: 01 Trigger audsource:l.status = STATUSSTARTED
Pl ayi ng

00: 00: 00: 01 | f audsource: 1l.status = STATUSSTARTED Got o
Pl ayi ng

Vdid vaues for the Status object are:

STATUSSTARTED
STATUSSTOPPED
STATUSPAUSED

Page#40

The StatusT ext objects is a gring vaue used mainly for logging or for digolaying to a human
due to some condition. This object’s textud vaue will aways be st a the same time as the
Status object. They have the same content, but Status is used to make decisions with and
StatusText is used to display to humans.

00: 00: 00: 01 Set var:1l vidsource: 1. statustext
00: 00: 00: 01 Wite serport: 1 audsource: 1. st at ust ext
00: 00: 00: 01 Wite display:l.row 2 audsource: 1. st at ust ext

Error and Error Text

These are object properties that inform the user what last went wrong with the corresponding
audio resource. They are not changed by the system until there is a new error. If you are
finished usng the information when an eror occurs, you may reset to some non-error
condition, or you may leave the error message there until the next error occurs.

The Error property is a number that can essily be triggered or tested in some way.

00: 00: 00: 01 Set var:1 audsource:1l.error

00: 00: 00: 01 Trigger audsource: 1l.error != NOERROR ErrorAudl
00: 00: 00: 01 | f audsource: 1l.error = ERRORFI LEM SSI NG Got o
NoFi | e

Vdid vdues for the Error Object Property are:

ERRORNONE
ERRORMISSINGFILE
ERRORNOTQUEUED
ERRORQUEUING
ERROROPENING
ERRORCLOSING
ERRORINITIALIZING
ERRORSTOPPING
ERRORLOOPING
ERRORMUTING
ERRORSETTINGSAMPLERATE
ERRORSETTINGRESOLUTION

The Error Textproperty is a dring variable used mainly for logging or for digplaying to a
humen.

00: 00: 00: 01 Set var:1 audsource: l.errortext

00: 00: 00: 01 Wite serport: 1 audsource: l.errortext

00: 00: 00: 01 Wite display:1.row 2 audsource: 1. errortext
Digital Input Resources (diginput)

We support severa configurations of digitd input cards. This dlows a great ded of
flexibility, suited to the needs of the user. We support dry contact, wet contact, isolaied, non-
isolated, high-power, TLL, and just about every other form of digitd 1/O circuitry.

Page#41

Regardless of the dectricd configuration, when programming it's just a digital input.
Diginput Commands

If and Trigger

If and Trigger commands were explained a the beginning of the manud, but here is a closer
andysis with diginput resources. The vdid State of diginput resources is either ON or OFF,
logicaly ether 1 or 0. The If command is level-triggered, and looks at the state of the
diginput resource specified at the moment of the If. The Triggercommand, on the other
hand, is edgetriggered, and only darts the task if there is a trangtion between the opposite
gate and the desired state. If a diginput resource is OFF, and you want to trigger a task when
it goes ON, the task will be started when the diginput resource goes from OFF to ON, and
then does not trigger again until it goes from OFF to ON again.

Here are some examples of usng 1f and Trigger with diginput resources.

00: 00: 00: 01 If diginput:1 = ON Goto Sensor Enabl ed
00: 00: 00: 01 I f diginput:3 = OFF End
00: 00: 00: 01 If diginput:2 = digoutput:9 Start SensorMtch

00: 00: 00: 01 Trigger diginput:1 = ON

00: 00: 00: 01 Trigger diginput:592 = FALSE
00: 00: 00: 01 Trigger diginput:96 =1

00: 00: 00: 01 Trigger var:3 = diginput:4

Digoutput Commands

If and Trigger

If and Trigger commands were explained at the beginning of the manud, but here is a closer
andysis with digoutput resources. The vaid state of digoutput resources is either ON or OFF,
logicdly ether 1 or 0. The If command is level-triggered, and looks a the Sate of the
digoutput resource specified at the moment of the If. The Trigger command, on the other
hand, is edgetriggered, and only darts the task if there is a trangtion between the opposite
date and the desired gtate. If a digoutput resource is OFF, and you want to trigger a task

when it goes ON, the task will be started when the digoutput resource goes from OFF to ON,
and then does not trigger again until it goes from OFF to ON again.

You may ask yoursdf, why would | want to test a digitd output? Isn't it my script that turned
it on or off to begin with? The answer is yes of course, but you may fed it is gppropriate to
create sdf-contained Bsks that test output conditions, or otherwise to make sure in one part of
your show that the other part is working correctly, without a bunch of additiond logic. It's
just a great way to confirm things are working properly.

Here are some examples of weng If and Trigger with digoutput resources:

00: 00: 00: 01 If digoutput:1l = ON Goto PunpEnabl ed
00: 00: 00: 01 | f digoutput:3 = OFF End
00: 00: 00: 01 If digoutput:2 = diginput:9 Start Sensor Match

00: 00: 00: 01 Trigger digoutput:1 = ON
00: 00: 00: 01 Trigger digoutput:592 = FALSE

Page#42

00: 00: 00: 01 Trigger digoutput:96 =1
00: 00: 00: 01 Trigger var:3 = digoutput:4
On

On <digoutput>

The On command turns a digoutput to the ON, TRUE, or 1 position, logicdly and
eectricaly.

00: 00: 00: 01 On digoutput:1
00: 00: 00: 01 On di gout put: 2- 51, 58, 101- 234

Off
Off <digoutput>

The Off command turns a digoutput to the OFF, FALSE, or 0 postion, logicaly and
eectricaly.

00: 00: 00: 01 Of digoutput:1
00: 00: 00: 01 O f digoutput:2,7-49

Set
Set <digoutput> <vaue>

The Setcommand turns a digoutput to a particular vaue. If the vadue is nonzero, it is
equivaent to the Oncommand. If the vaue is zero, it is equivdent to the Off command.

00: 00: 00: 01 Set digoutput:1 ON

00: 00: 00: 01 Set digoutput: 16-21 OFF

00: 00: 00: 01 Set digoutput:31 var:6

00: 00: 00: 01 Set di gout put: 92-95, 97 dnxi nput: 13

Queue
Queue <digoutput> <animationfile.wav>

The Queue command loads the specified animation wavefile into memory and assigns it to
the specified digitd output. Unlike audio and video files that you may choose b place
entirdly in memory or play off the hard disk, animation wav files are so smdl in comparison
that they are aways loaded into memory in ther entirety.

Note: Animation files can be recorded by the IMS, or can be created by the user. The only

requirements are that the data is recorded in mono (one channd), the samples per second rate
is 60, and for digital animation files, values less than 50% are OFF and vaues greater than
50% are ON.

00: 00: 00: 01 Queue di gout put:1 “di gani mati on. wav”

00: 00: 00: 01 Queue di gouput: 9-22 “dupli cat edat a. wav”

00: 00: 00: 01 Queue di goutput:1 “fountai nshowchannel 1. wav”
00: 00: 00: 01 Queue di gout put: 32 “fount ai nshowchannel 32. wav”

Page#43

Start
Sart <digoutput>

The Start command begins playing back animation for the specified digital output resource-
from the current location in the animation file. If the animation file has just been queued,
playback will start from the beginning of the file. If the animation file has previoudy been
garted and was paused, playback will resume from the pause point.

00: 00: 00: 01 Start digoutput:1l
00: 00: 00: 01 Start digoutput:19-30
00: 00: 00: 01 Start digoutput:5,12-18, 21, 141-156

Pause
Pause <digoutput>

The Pause command pauses animation playback for the specified digitd output if it is
currently playing back. A subsequent Start commeand will resume playback from where it
paused.

00: 00: 00: 01 Pause di goutput:1
00: 00: 00: 01 Pause di gout put: 38-251
00: 00: 00: 01 Pause di gout put:9, 13

Stop
Stop <digoutput>

The Stop command stops animation playback for the specified digitd output if it is currently
playing back. Stop causes the animation file to resat to the beginning.

00: 00: 00: 01 Stop digoutput:1l
00: 00: 00: 01 St op di gout put: 56- 59, 61
00: 00: 00: 01 St op di goutput:3

Serial Port Resources (serport)

Serial ports dlow serid communication between the IMS and another device. There are
vaious types of serid ports which have different speed limitations, electrica characterigtics,
and sometimes other settings. The IMS supports a greet dedl of these options, and make ther
use as sandardized as possible. Serid ports have incoming and outgoing data Streams or
buffers. This is where the data resides that is useful to the programmer. Almogt dl of the
serid commands refer to an object property of the serid port.

NOTE: It is important to understand a few underlying concepts of the IMS in regards to
serid ports. The fird is that the generd way to utilize aserid port is to configure its physicd
characterigtics, and then to put data in its outgoing buffer or to look for deta coming in its
ingoing buffer. You may be interested only in teling a device wha to do, with no feedback,
or you may be waiting to be told to do something from another device without giving it
feedback. In these cases, you can work with he outgoing or incoming buffer without
worrying about the other. In al other cases, youll be working with both. However, usudly
one section of code deds with outgoing messages, and one section of code dedls with

Page#44

incoming messages. Rardly, if ever, is it necessary to manipulate both buffers in the same
section of code. Well look a working with each buffer separately, as you undoubtedly will.
Regardless of which buffer youre dedling with, the serid port needs to first be configured
properly. This is normaly done once in AutoBegin, or in a serid initidization routine caled
from AutoBegin.

The following example configures the serid port, and sends out severd serid messages
without expecting a response from te device (even if it sends one):

- AutoBegin -
00: 00: 00: 01 Start ConfigSerial Ports
00: 00: 00: 01 Start Mai nShow

- ConfigSerialPorts -

00: 00: 00: 01 Set serport: 1. baudrate 9600
00: 00: 00: 01 Set serport:1l.databits 8
00: 00: 00: 01 Set serport:1 stopbits 1
00: 00: 00: 01 Set serport:1 parity NONE

- MainShow -
00: 00: 00: 01 Search serport:1 1000
00: 00: 00: 01 Play serport:1

- Search -
00: 00: 00: 01 Wite param 1 “SE’ param 2 0x0D

-Play -
00: 00: 00: 01 Wite param 1l “PL” 0x0D

If we want to make sure we got a response from the device, it takes a lot more additiond
code. Fortunately for serid ports, it is common to import sections of aready crested tasks,
which can be congdered a “protocol” file

The following example expounds upon the prior one: the Search and Play tasks have been
replaced, and additiona tasks have been added.

- Search -
00: 00: 00: 01 Wite param 1l “SE’ param 2 0x0D
00: 00: 00: 01 Start Get ResponseFronter Port 1

- Play -
00: 00: 00: 01 Wite param 1l “PL” 0x0D
00: 00: 00: 01 Start Get ResponseFronfer Port 1l

- GetResponseFromSer Portl -

00: 00: 00: 01 Del ete serport:1.inbuffer

00: 00: 00: 01 Set var:1 FALSE

00: 00: 00: 01 Trigger serport: 1.inbufferchanged SP1RXD
00: 00: 00: 01 Label Wait 15 franes for a response

00: 00: 00: 15 Label Should have gotten a response by now
00: 00: 00: 15 RenoveTri ggers SP1RXD

Page#45

00: 00: 00: 15 If (var:1 = TRUE) End
00: 00: 00: 15 Label Error
00: 00: 00: 15 Wite display:1.row 1 “SP1: Invalid Response”

00: 00: 00: 01 Label Trigger: serport:1.inbuffer has changed
00: 00: 00: 01 Label nmake sure the inbuffer has nmn 2 bytes

00: 00: 00: 01 If (serport:1.inbuffercount < 2) End

00: 00: 00: 01 Label make sure the first byte is correct

00: 00: 00: 01 If (serport:l.inbuffer:1!=*"R) End

00: 00: 00: 01 Label nmake sure the second byte is correct
00: 00: 00: 01 If (serport:1l.inbuffer:2 !'= Ox0OD End

00: 00: 00: 01 Label if we got here we have a full response

00: 00: 00: 01 Set var:1l TRUE
Serport Commands

Write
Write <serport> <datal>..<dataN>

Transmitting data out a seria port is easier than receiving data. You don't have to worry
about the outgoing buffer if youre only sending bytes out the port. Write will accomplish
this

00: 00: 00: 01 Wite serport:1 “send string out the port”
00: 00: 00: 01 Wite serport:9 15

00: 00: 00: 01 Wite serport:12-14 0xO0D

00: 00: 00: 01 Wite serport:4 SERI ALBREAK

00: 00: 00: 01 Wite serport:1 vidsource: 2. stat ust ext

00: 00: 00: 01 Wite serport:7 var:9

Multiple data sets can be sent out in one command. Here is an example of sending out a
Pioneer laserdisc Search command to search to frame 100 (SE00100 CR LF)

00: 00: 00: 01 Set var:1 100
00: 00: 00: 01 Format Var var:1 “9%.5d” var:2
00: 00: 00: 01 Wite serport:7 “SE” var:1 0x0D

One message can be divided over multiple Write commands as long as they are sent out a the
sametime:

00: 00: 01: 01 Wite serport:7 “SE
00: 00: 00: 01 Wite serport:7 var:1
00: 00: 00: 01 Wite serport:7 0x0D

One specid seria data type is SERIALBREAK. This specia data type causes a Line Break to
be put out on the serid port.

00: 00: 00: 01 Wite serport:5 SERI ALBREAK

Page#46

Delete

Delete <serport.inbuffer or serport.inbuffer.oyte or serport.outbuffer or
serport:outbuffer.byte>

The Delete command removes dl or part of the specified buffer. For sending, Delete is
usudly used just to clear out the outbuffer, but for receiving, there are different methods
which would cause you to delete the entire inbuffer, or one or more bytes out of it:

00: 00: 00: 01 Del et e serport: 3. out buffer

00: 00: 00: 01 Del ete serport:2.inbuffer

00: 00: 00: 01 Del ete serportl7-19.inbuffer:2
00: 00: 00: 01 Del ete serport:5.inbuffer:2-5

00: 00: 00: 01 Delete serport:59.inbuffer:17-41

Serport Objects

Serports have many objects. You need to configure the first set of properties, every time,
unless you are happy with default 9600 baudrate, 8 databits, 1 stopbits, NONE parity settings.

Baudrate

The baudrate is the speed at which you need the data to send/receive at. You can st the baud
rate to any vaue with our serid ports If youre talking between two IMS units (for some
reason) and want to make it difficult for someone to tgp the line and lisen to the messages?
Set the baudrate on loth to 10000 baud or 10001 baud, or some other unique vaue The
sandard values are:

300
1200
2400
4800
9600
19200
38400
115200

00: 00: 00: 01 Set serport: 1. baudrate 9600

00: 00: 00: 01 Set serport: 3. baudrate 38400

00: 00: 00: 01 Set serport:5-7.baudrate 115200

DataBits

The databits object is how many bitsof data you want to send for each byte. You can ether
set it to 8 hits (3255) or 7 bits (0-127).

00: 00: 00: 01 Set serport:1l.databits 8
00: 00: 00: 01 Set serport:9.databits 7

StopBits

The stopbitsobject is how many bits you want to use to tdl the recaiving serid port thet the
data bits are done transmitting. You can setitto 1or 2. lisnormd, but if you want to space
out bytes a bit more, you can st it to 2 (if you know what you're doing).

Page#47

00: 00: 00: 01 Set serport:l.stopbits 1
00: 00: 00: 01 Set serport:19 stobits 2
Parity

The parity object determines whether you want a parity bit a dl, and if you do, whether it is-
tests for Odd or Even parity in the daa bits, or if it's dways 1, or dways O.

NONE: No paity bit & dl

ODD: Tedts data bits for odd parity
EVEN: Tests data bits for even parity
MARK: Force parity bit to a0

SPACE: Force parity bitto a1

00: 00: 00: 01 Set serport:1.parity NONE
00: 00: 00: 01 Set serport:7.parity EVEN
00: 00: 00: 01 Set serport3-4.parity SPACE

Here are some common setups for serid port configurations. The speed (baudrate) can vary,
but these settings normaly go together:

00: 00: 00: 01 Set serport:1l.databits 8
00: 00: 00: 01 Set serport:l.stopbits 1
00: 00: 00: 01 Set serport:l.parity NONE
00: 00: 00: 01 Set serport:l.databits 7
00: 00: 00: 01 Set serport:1l.stopbits 1
00: 00: 00: 01 Set serport:1l.parity EVEN
00: 00: 00: 01 Set serport:l.databits 7
00: 00: 00: 01 Set serport:l.stopbits 1
00: 00: 00: 01 Set serport:1.parity ODD

Outbuffer
You can put lytes directly into the outgoing buffer. You do this with a Setcommand:

00:00:00:01 Set serport:1.outbuffer var:1
00:00:00:01

The Write command autometically assumes you want to put the deta in the seria port buffer,
but you can specify it manudly. The following three tasks are equivaent:

-SendTestl-
00: 00: 00: 01 Del ete serport: 1. outbuffer
00: 00: 00: 01 Wite serport:1 “test”

- SendTest2 -
00: 00: 00: 01 Del ete serport: 1. outbuffer
00: 00: 00: 01 Set serport:1l.outbuffer “test”

Page#48

- SendTest3 -

00: 00: 00: 01 Del ete serport: 1. outbuffer
00: 00: 00: 01 Set serport:1.outbuffer:1 "
00: 00: 00: 01 Set serport:1.outbuffer:2*
00: 00: 00: 01 Set serport:1.outbuffer:3 *
00: 00: 00: 01 Set serport:1.outbuffer:4

‘ ”
‘ ”
”

t
e
S
t

OutBufferCount

The outbuffer count property tels you how many bytes are in the outbuffer. It's not as
useful asinbuffercount, because usudly you know how many bytes you sent out the port in
your code, but it's there for completeness sake.

00: 00: 00: 01 Set var:1 serport: 1. out buffercount
00: 00: 00: 01 If (serport:1.outbuffercount < 3) Goto Bad
00: 00: 00: 01 Trigger serport:1.outbuffercount > 2048 Bi gMsg

OutBufferChanged

The outbuffer changedobject tdls you that the outbuffer has added or removed bytes.

While this may dso be determined by noticing a change through the outbuffercount vaue, the
outbufferchangted property autometicaly informs the user when the outbuffer has changed
for any reason.

00: 00: 00: 01 Trigger serport: 3. out bufferchanged MyTask
00: 00: 00: 01 | f serport: 1. outbufferchanged = TRUE Goto Ck

InBuffer

The inbuffer object gives you access to bytes in the incoming receive buffer. In fact, thisis
the norma way to process serid commands. You can take bytes out with Set, Remove them

with Delete, or test them with If.

00: 00: 00: 01 Set var:1 serport:1.inbuffer
00: 00: 00: 01 Set var:1 serport:1.inbuffer:3
00: 00: 00: 01 Set var:1 serport.l.inbuffer:9-12

00: 00: 00: 01 Del ete serport:1.inbuffer
00: 00: 00: 01 Del ete serport:1l.inbuffer:5
00: 00: 00: 01 Del ete serport:1.inbuffer:29-61

00: 00: 00: 01 If (serport:l.inbuffer = “test”) goto Ok

00: 00: 00: 01 If (serport:1.inbuffer:1-4 = “test”) goto Ck
00: 00: 00: 01 If (serport:l.inbuffer:5 = OxOD) goto Ok
InBufferCount

The inbuffercount object tels you how many bytes are in the inbuffer. If 3 bytes come in the
serid port, inbuffercount will be 3. If you then delete one of the bytes with Delete, then
inbuffercount will be 2. It's a great way of testing if enough data has come in to complete

your message.
00: 00: 00: 01 Set var:1 serport:1.inbuffercount

Page#49

00: 00: 00: 01 If (serport:1.inbuffercount > 4) CGoto Ck
00: 00: 00: 01 Trigger serport:1.inbuffercount > 2 Got 2Byt es

InBufferChanged

The inbuffer changed property tdls you that the inbuffer has added or removed bytes. It's
dmilar to inbuffercount (because that changes whenever inbufferchanged changes), but it
just lets you know anytime the inbuffer has changed for any reason.

00: 00: 00: 01 Trigger serport:2.inbufferchanged SP2RXD
00: 00: 00: 01 | f serport:1.inbufferchanged = TRUE Goto Ck

Here is another example of using the properties of serport to look for an incoming message
from another device. In this case, the example uses a 5 byte message, where the first bytes is
the Start of Message byte, and is aways OxFF, and the last four bytes are data bytes to
determine what to do:

- tup -

00: 08: 00: 01 Label Setup Serial Protocol

00: 00: 00: 01 Set serport: 1. baudrate 19200

00: 00: 00: 01 Set serport:1l.databits 8

00: 00: 00: 01 Set serport:l.stopbits 1

00: 00: 00: 01 Set serport:1l.parity NONE

00: 00: 00: 01 Label Setup Serial Interrupts

00: 00: 00: 01 Trigger serport:1.inbufferchanged SP1RXD

- SP1IRXD -

00: 00: 00: 01 Label Add New Data to Serial Buffer

00: 00: 00: 01 Label FF CMD ALC PAG BTN

00: 00: 00: 01 Label LoopLooki ngFor SOM

00: 00: 00: 01 If (serport:l.inbuffercount = 0) End

00: 00: 00: 01 If (serport:l.inbuffer:1l = OxFF) Goto Got SOM
00: 00: 00: 01 Del ete serport:1.inbuffer:1

00: 00: 00: 01 Got 0o LoopLooki ngFor SOM

00: 00: 00: 01 Label Got SOM

00: 00: 00: 01 If (serport:1.inbuffercount >= 5) Start GoMsg

-GoMsg -

00: 00: 00: 01 Label Command Byte

00: 00: 00: 01 Set var:1 serport:1.inbuffer:2
00: 00: 00: 01 Label Data Byte 1

00: 00: 00: 01 Set var:2 serport:l.inbuffer:3
00: 00: 00: 01 Label Data Byte 2

00: 00: 00: 01 Set var:3 serport:1.inbuffer:4
00: 00: 00: 01 Label Data Byte 3

00: 00: 00: 01 Set var:4 serport:1.inbuffer:5
00: 00: 00: 01 Label Get R d of Message

00: 00: 00: 01 Del ete serport:l.inbuffer:1-5
00: 00: 00: 01 If var:1 = 1 Start Conmandl
00: 00: 00: 01 If var:1 2 Start Conmand2

Page#50

Commandl and Command? etc. tasks are not shown...

Display Resources (display)

Display resources dlow you to display information, most often text. An LCD display often
comes with the IMS, and it is display:1. Displays are row and column indexed, dthough you
don't have to specify the row and column just to display something.

Display Commands

Write
Write <display> <dgring or var>

The Write command writes to the display resource. You can specify the row and column,
just the row, or nether. Ultimately a gring is being written, so you can ether specify a dring
to digolay, or use a gring variable.

00: 00: 00: 01 Wite display:1 “hello world”
00: 00: 00: 01 Wite display:1.row. 1 “on the first row
00: 00: 00: 01 Wite display:2.row.1 5 “row 2, start col 5"

00: 00: 00: 01 Set var:1l “Recycl e Your Aninmals”
00: 00: 00: 01 Wite display:1l.row. 2 var:1

00: 00: 00: 01 Set var:2 13

00: 00: 00: 01 Set var:3 44

00: 00: 00: 01 Format Var var:9 “Row. % Col : %@d” var:2 var:3
00: 00: 00: 01 Wite display:6.row 13 44 var:9

Button Resources (button)

Button resources are judt like digita inputs, except they are specificaly designated as physica
buttons thet are locd to the IMS itself. You can of course, atach buttons to wires that are
connected to digitd inputs on the IMS, and those certainly work the same way, but these
buttons are fixed on the machine.

Our LCD display that often comes with an IMS has 7 buttons on them. They are numbered in
this order to their labding:

ButtonIndex L abel

Left Arrow
Right Arrow
Up Arrow
Down Arrow
Menu

F2

F1

~NOoO ok~ wWN PR

Page#51

Button Commands

If and Trigger

If and Trigger commands were explained at the beginning of the manua, but here is a closer
andysis with button resources. The vadid date of button resources is either ON or OFF,
logicaly ether 1 or 0. The If command is level-triggered, and looks & the state of the button
resource specified a the moment of the If. The Trigger command, on the other hand, is
edge-triggered, and only garts the task if there is a trandtion between the opposite sate and
the desired state. If a button resource is OFF, and you want to trigger a task when it goes ON,
the task will be started when the button resource goes from OFF to ON, and then does not
trigger again until it goes from OFF to ON again.

Note that Snce button resources are pressed by humans, they are normaly pushed and let go,
which means the IF command is not that useful. The Trigger command on the other hand, is
very useful with button resources.

Here are some examples of usng |If and Trigger with button resources.

00: 00: 00: 01 If button:3 = ON Goto Start Show
00: 00: 00: 01 I f button:2 = OFF End
00: 00: 00: 01 If button:2 = digoutput:2 Start Interl ockCk

00: 00: 00: 01 Trigger button:1 = ON

00: 00: 00: 01 Trigger button: 69 = FALSE
00: 00: 00: 01 Trigger button:96 = 1

00: 00: 00: 01 Trigger var:3 = button: 4

One particularly beneficid use of the IF command with a button is for debouncing /
deglitching. Any electricd input Sgnd can have noise and sgnd leve changes right around
trangdtions, but buttons are even more susceptible to human pushes. It's quite common for a
person to accidentally push twice, or bo not push hard enough. Again, keep in mind, that the
example procedures below for debouncing / deglitching work well with diginput resources as
wall.

Here is an example of using a Triggercommand on a button push, and then ensuring the
button is gill depressed a tenth of asecond later using the If command. This prevents fase
positives.

- AutoBegin -
00: 00: 00: 01 Trigger button:3 = ON Possi bl yGot Butt onPush

- PossiblyGotButtonPush -

00: 00: 00: 01 Label Wait 3 franes, then check button again
00: 00: 00: 04 If button:3 = OFF End

00: 00: 00: 04 Label I1t's now safe to consider button pushed
00: 00: 00: 04 Label Do sonething here

Hereisadmilar example, but this time we adso want to make sure that the person let go of the
button. It's et to wait a much longer time, such as a full second, in case they're a dow

button pusher.

Page#%2

- AutoBegin -
00: 00: 00: 01 Trigger button:3 = ON Possi bl yGot Butt onPush

- PossiblyGotButtonPush -

00: 00: 00: 01 Label Wait 3 franes, then check button again
00: 00: 00: 04 If button:3 = OFF End

00: 00: 01: 04 I f button:3 = ON End

00: 00: 01: 04 Label It's now safe to consider button pushed
00: 00: 00: 04 Label Do sonething here

SMPTE Resources (smpte)

Multiple streams of SMIPTE LTC can be utilized smultaneoudy, dthough it is most common
to have only one stream.

SMPTE Reading Commands

Reading SMIPTE is quite easy. It's the default setting, and ther€'s redly nothing to change.
Just start triggering off the SMPTE time.

- AutoBegin -
00: 00: 00: 01 Trigger snpte:1 = 03:00:00: 00 MyShow

Although you should never need to change modes with a smpte stream, you can ill do it If
you needed to switch back to reading from generdting, you can do this

00: 00: 00: 01 Set snmpte: 1. node read

SMPTE Generating Commands

There are 3 things you need to st up if youre going to generate SMPTELTC. Thefirg isto
take the smpte stream out of its default mode of reading by changing the mode. The second is
to st the framerate to the rate of choice, and the third is to st the time to begin generating
from.

Vdid vdues for the mode object propety are:

read
generate

Vdid vaues for the framerate object propety ae
23.976
24
25
29.97
30
30drop

Then you can Start and Stop the smpte stream:

00: 00: 00: 01 Start snpte: 1
00: 00: 00: 01 Stop snpte: 1

You can dso supply a generate time when you Start smpte.

Page#53

00: 00: 00: 01 Start snpte:1 01:00: 00: 00
This is equivdent to

00: 00: 00: 01 Set snpte:l.generatetinme 01:00: 00: 00
00: 00: 00: 01 Start snpte: 1

Here is a common example of setting up smpte in a show and stopping it.

- AutoBegin -

00: 00: 00: 01 Set snpte: 1. node generate

00: 00: 00: 01 Set snpte:l.franmerate 29.97

00: 00: 00: 01 Label Generate with 10 frane preroll
00: 00: 00: 01 Set snpte:1l.generatetine 00:59:59: 20

- StartShow -
00: 00: 00: 01 start snpte:1

- StopShow -
00: 00: 00: 01 stop snpte: 1

You can change the time that you're generating from, in the middle of generating. In this
example, smpte will jump from 01:02:00:00 to 03:15:00:00.

00: 00: 00: 01 start snpte:1 01:00: 00: 00
00: 02: 00: 00 set snpte:l.generatetine 03:15:00: 00
00: 02: 30: 00 stop snpte: 1

STUFF TO FI X / GO OVER I N MANUAL (by me probably)
Get rid of stuff that doesn’t work anynore

STUFF TO FI X / GO OVER I N MANUAL (by the Nanci nator)
Repl ace all occurrences of Property with Object

STUFF TO ADD by the Nancinator with Jeff’s help

- Binary operations and conparisons

- TCP/IIP 2?2?22

- Remote 1/0

- Sign

- DWW

- DWW pl ayback

- Synapse

- Var textual operations md/right/left and conversions
. nunber

- Hopelessly drifting, bathing in beautiful agony

- | amendlessly falling, lost in this wonderful msery

- In peaceful sedation | lay half awake

Page#%4

- And all of the panic inside starts to fade
- Hopelessly drifting, bathing in beautiful agony...
- Video objects for saturation, white bal ance etc.

- Task stuff - .running. .result, params
- Email stuff

- Hysteresis, lifo, fifo

- Audssource audio

- Log Stuff

- Artificial Intelligence/ Neural Networking — Open the pod
bay doors Hal

- System hour system dow system sunset system sunrise
system | atitude system | ongitude, other GPS functions

- Random

- Fileilo

- Backup/restore vari abl es

- FEtc. etc.

Page#55

